[Erratum] Brain Imaging and neurostimulation in health and disorders: status report

Authors

DOI:

https://doi.org/10.17267/2965-3738bis.2024.e5952

Keywords:

Neuromodulation, Brain Stimulation, Brain Image, Neuroimage, Neuroscience

Abstract

INTRODUCTION: Despite being considered least important for clinical practice in the pyramid of evidence for recommendations, sometimes scientists' expert opinions could help to better understand the summarization of updated publications. OBJECTIVE: To provide a major summarized update about brain imaging and stimulation of the nervous system in health and disease. METHODS: Comprehensive review developed by experts in each subarea of knowledge in neuroimaging and non-invasive stimulation of the nervous system. A team of researchers and clinic experts was invited to present an update on their area of expertise. RESULTS: In basics on brain imaging techniques, we approach general and quantitative electroencephalography, functional magnetic resonance imaging, functional near-infrared spectroscopy, and experimental paradigms in brain imaging studies. Were included associations between transcranial magnetic stimulation and electromyography, electroencephalography, and functional near-infrared stimulation to evaluate brain activity. Furthermore, we showed several actualized central and peripheral neuromodulation techniques. And finally, we presented different clinical and performance uses of non-invasive neuromodulation. CONCLUSION: To our knowledge, this is a major summarized and concentrated update about brain imaging and stimulation that can benefit neuroscience researchers and clinicians from different levels of experience.

References

(1) Chen S, He Z, Han X, He X, Li R, Zhu H, et al. How Big Data and High-performance Computing Drive Brain Science. Genomics Proteomics Bioinformatics. 2019;17(4):381-92. http://dx.doi.org/10.1016/j.gpb.2019.09.003 DOI: https://doi.org/10.1016/j.gpb.2019.09.003

(2) Sá KN, Venas G, Souza MP, Andrade DC, Baptista AF. Brazilian research on noninvasive brain stimulation applied to health conditions. Arq. Neuropsiquiatr. 2021;79:974-981. http://dx.doi.org/10.1590/0004-282X-ANP-2020-0480 DOI: https://doi.org/10.1590/0004-282x-anp-2020-0480

(3) Reti IM. A rational insurance coverage policy for repetitive transcranial magnetic stimulation for major depression. J ECT. 2013;29(2):e27-8. http://dx.doi.org/10.1097/YCT.0b013e3182801cd7 DOI: https://doi.org/10.1097/YCT.0b013e3182801cd7

(4) Fregni F, Nitsche MA, Loo CK, Brunoni AR, Marangolo P, Leite J, et al. Regulatory Considerations for the Clinical and Research Use of Transcranial Direct Current Stimulation (tDCS): review and recommendations from an expert panel. Clin Res Regul Aff. 2015;32(1):22-35. http://dx.doi.org/10.3109/10601333.2015.980944 DOI: https://doi.org/10.3109/10601333.2015.980944

(5) Valero-Cabré A, Amengual JL, Stengel C, Pascual-Leone A, Coubard OA. Transcranial magnetic stimulation in basic and clinical neuroscience: A comprehensive review of fundamental principles and novel insights. Neurosci Biobehav Rev. 2017;83:381-404. http://dx.doi.org/10.1016/j.neubiorev.2017.10.006 DOI: https://doi.org/10.1016/j.neubiorev.2017.10.006

(6) Hong KS, Khan MNA, Ghafoor U. Non-invasive transcranial electrical brain stimulation guided by functional near-infrared spectroscopy for targeted neuromodulation: a review. J Neural Eng. 2022;19(4). http://dx.doi.org/10.1088/1741-2552/ac857d DOI: https://doi.org/10.1088/1741-2552/ac857d

(7) Abellaneda-Pérez K, Vaqué-Alcázar L, Solé-Padullés C, Bartrés-Faz D. Combining non-invasive brain stimulation with functional magnetic resonance imaging to investigate the neural substrates of cognitive aging. J Neurosci Res. 2022;100(5):1159-70. http://dx.doi.org/10.1002/jnr.24514 DOI: https://doi.org/10.1002/jnr.24514

(8) Cash RFH, Cocchi L, Lv J, Fitzgerald PB, Zalesky A. Functional Magnetic Resonance Imaging-Guided Personalization of Transcranial Magnetic Stimulation Treatment for Depression. JAMA Psychiatry. 2021;78(3):337-9. http://dx.doi.org/10.1001/jamapsychiatry.2020.3794 DOI: https://doi.org/10.1001/jamapsychiatry.2020.3794

(9) Lin CS. Brain signature of chronic orofacial pain: a systematic review and meta-analysis on neuroimaging research of trigeminal neuropathic pain and temporomandibular joint disorders. PLoS One. 2014;9(4):e94300. http://dx.doi.org/10.1371/journal.pone.0094300 DOI: https://doi.org/10.1371/journal.pone.0094300

(10) Wu W, Zhang Y, Jiang J, Lucas MV, Fonzo GA, Rolle CE, et al. An electroencephalographic signature predicts antidepressant response in major depression. Nat Biotechnol. 2020;38(4):439-47. http://dx.doi.org/10.1038/s41587-019-0397-3 DOI: https://doi.org/10.1038/s41587-019-0397-3

(11) Montenegro TS, Ali R, Arle JE. Closed-Loop Systems in Neuromodulation: Electrophysiology and Wearables. Neurosurg Clin N Am. 2022;33(3):297-303. http://dx.doi.org/10.1016/j.nec.2022.02.008 DOI: https://doi.org/10.1016/j.nec.2022.02.008

(12) Hendrickson T, Chen M, Mueller B, Francis S, Houlihan K, Opitz A, et al. An individualized non-invasive brain stimulation targeting pipeline using functional imaging data and SimNIBS. Brain Stimul. 2023;16(1):368. https://doi.org/10.1016/j.brs.2023.01.722 DOI: https://doi.org/10.1016/j.brs.2023.01.722

(13) Moreno JG, Biazoli Jr CE, Baptista AF, Trambaiolli LR. Closed-loop neurostimulation for affective symptoms and disorders: An overview. Biol Psychol. 2021;161:108081. http://dx.doi.org/10.1016/j.biopsycho.2021.108081 DOI: https://doi.org/10.1016/j.biopsycho.2021.108081

(14) Rossi S, Antal A, Bestmann S, Bikson M, Brewer C, Brockmöller J, et al. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clin Neurophysiol. 2021;132(1):269-306. http://dx.doi.org/10.1016/j.clinph.2020.10.003 DOI: https://doi.org/10.1016/j.clinph.2020.10.003

(15) Rosson S, Filippis R, Croatto G, Collantoni E, Pallottino S, Guinart D, et al. Brain stimulation and other biological non-pharmacological interventions in mental disorders: An umbrella review. Neurosci Biobehav Rev. 2022;139:104743. http://dx.doi.org/10.1016/j.neubiorev.2022.104743 DOI: https://doi.org/10.1016/j.neubiorev.2022.104743

(16) Brini S, Brudasca NI, Hodkinson A, Kaluzinska K, Wach A, Storman D, et al. Efficacy and safety of transcranial magnetic stimulation for treating major depressive disorder: An umbrella review and re-analysis of published meta-analyses of randomised controlled trials. Clin Psychol Rev. 2023;100:102236. http://dx.doi.org/10.1016/j.cpr.2022.102236 DOI: https://doi.org/10.1016/j.cpr.2022.102236

(17) Drumm S, Bradley C, Moriarty F. “More of an art than a science”? The development, design and mechanics of the Delphi Technique. Res Social Adm Pharm. 2022;18(1):2230-6. http://dx.doi.org/10.1016/j.sapharm.2021.06.027 DOI: https://doi.org/10.1016/j.sapharm.2021.06.027

(18) Murphy MK. Consensus Development Methods, and Their Use in Clinical Guideline Development [Internet]. 2nd. vol. Winchester: Health Technology Assessment; 1998. Available from: https://books.google.com/books/about/Consensus_Development_Methods_and_Their.html?hl=&id=QiV_wgEACAAJ DOI: https://doi.org/10.3310/hta2030

(19) Müller-Putz GR. Electroencephalography. Handb Clin Neurol. 2020;168:249-62. http://dx.doi.org/10.1016/B978-0-444-63934-9.00018-4 DOI: https://doi.org/10.1016/B978-0-444-63934-9.00018-4

(20) Olejniczak P. Neurophysiologic basis of EEG. J Clin Neurophysiol. 2006;23(3):186-9. http://dx.doi.org/10.1097/01.wnp.0000220079.61973.6c DOI: https://doi.org/10.1097/01.wnp.0000220079.61973.6c

(21) Jackson AF, Bolger DJ. The neurophysiological bases of EEG and EEG measurement: a review for the rest of us. Psychophysiology. 2014;51(11):1061-71. http://dx.doi.org/10.1111/psyp.12283 DOI: https://doi.org/10.1111/psyp.12283

(22)Buzsáki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes. Nat Rev Neurosci. 2012;13(6):407-20. http://dx.doi.org/10.1038/nrn3241 DOI: https://doi.org/10.1038/nrn3241

(23) Mussigmann T, Bardel B, Lefaucheur JP. Resting-state electroencephalography (EEG) biomarkers of chronic neuropathic pain. A systematic review. Neuroimage. 2022;258:119351. http://dx.doi.org/10.1016/j.neuroimage.2022.119351 DOI: https://doi.org/10.1016/j.neuroimage.2022.119351

(24) Horvath A, Szucs A, Csukly G, Sakovics A, Stefanics G, Kamondi A. EEG and ERP biomarkers of Alzheimer’s disease: a critical review. Front Biosci. 2018;23(2):183-220. https://doi.org/10.2741/4587 DOI: https://doi.org/10.2741/4587

(25) Waninger S, Berka C, Stevanovic Karic M, Korszen S, Mozley PD, Henchcliffe C, et al. Neurophysiological Biomarkers of Parkinson’s Disease. J Parkinsons Dis. 2020;10(2):471-80. http://dx.doi.org/10.3233/JPD-191844 DOI: https://doi.org/10.3233/JPD-191844

(26) Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52(3):1059-69. http://dx.doi.org/10.1016/j.neuroimage.2009.10.003 DOI: https://doi.org/10.1016/j.neuroimage.2009.10.003

(27) Babiloni C, Lizio R, Marzano N, Capotosto P, Soricelli A, Triggiani AI, et al. Brain neural synchronization and functional coupling in Alzheimer’s disease as revealed by resting state EEG rhythms. Int J Psychophysiol. 2016;103:88-102. http://dx.doi.org/10.1016/j.ijpsycho.2015.02.008 DOI: https://doi.org/10.1016/j.ijpsycho.2015.02.008

(28) Stam CJ. Modern network science of neurological disorders. Nat Rev Neurosci. 2014;15(10):683-95. https://doi.org/10.1038/nrn3801 DOI: https://doi.org/10.1038/nrn3801

(29) Friston KJ. Functional and effective connectivity: a review. Brain Connect. 2011;1(1):13-36. http://dx.doi.org/10.1089/brain.2011.0008 DOI: https://doi.org/10.1089/brain.2011.0008

(30) Tommaso M, Trotta G, Vecchio E, Ricci K, Van de Steen F, Montemurno A, et al. Functional Connectivity of EEG Signals Under Laser Stimulation in Migraine. Front Hum Neurosci. 2015;9:640. http://dx.doi.org/10.3389/fnhum.2015.00640 DOI: https://doi.org/10.3389/fnhum.2015.00640

(31) Santana JERS, Baptista AF, Lucena R, Lopes TS, Rosário RS, Xavier MR, et al. Altered Dynamic Brain Connectivity in Individuals With Sickle Cell Disease and Chronic Pain Secondary to Hip Osteonecrosis. Clin EEG Neurosci. 2021;54(3):333-42. http://dx.doi.org/10.1177/15500594211054297 DOI: https://doi.org/10.1177/15500594211054297

(32) Jack Jr CR, Wiste HJ, Schwarz CG, Lowe VJ, Senjem ML, Vemuri P, et al. Longitudinal tau PET in ageing and Alzheimer’s disease. Brain. 2018;141(5):1517-28. https://doi.org/10.1093/brain/awy059 DOI: https://doi.org/10.1093/brain/awy059

(33) Babiloni C, Arakaki X, Azami H, Bennys K, Blinowska K, Bonanni L, et al. Measures of resting state EEG rhythms for clinical trials in Alzheimer’s disease: Recommendations of an expert panel. Alzheimers Dement. 2021;17(9):1528-53. http://dx.doi.org/10.1002/alz.12311 DOI: https://doi.org/10.1002/alz.12311

(34) Babiloni C, Blinowska K, Bonanni L, Cichocki A, De Haan W, Del Percio C, et al. What electrophysiology tells us about Alzheimer’s disease: a window into the synchronization and connectivity of brain neurons. Neurobiol Aging. 2020;85:58-73. http://dx.doi.org/10.1016/j.neurobiolaging.2019.09.008 DOI: https://doi.org/10.1016/j.neurobiolaging.2019.09.008

(35) Rossini PM, Di Iorio R, Vecchio F, Anfossi M, Babiloni C, Bozzali M, et al. Early diagnosis of Alzheimer’s disease: the role of biomarkers including advanced EEG signal analysis. Report from the IFCN-sponsored panel of experts. Clin Neurophysiol. 2020;131(6):1287-310. http://dx.doi.org/10.1016/j.clinph.2020.03.003 DOI: https://doi.org/10.1016/j.clinph.2020.03.003

(36) Canuet L, Tellado I, Couceiro V, Fraile C, Fernandez-Novoa L, Ishii R, et al. Resting-State Network Disruption and APOE Genotype in Alzheimer’s Disease: A lagged Functional Connectivity Study. PLoS One. 2012;7(9):e46289. https://doi.org/10.1371/journal.pone.0046289 DOI: https://doi.org/10.1371/journal.pone.0046289

(37) Jelic V, Johansson SE, Almkvist O, Shigeta M, Julin P, Nordberg A, et al. Quantitative electroencephalography in mild cognitive impairment: longitudinal changes and possible prediction of Alzheimer’s disease. Neurobiol Aging. 2000;21(4):533-40. http://dx.doi.org/10.1016/s0197-4580(00)00153-6 DOI: https://doi.org/10.1016/S0197-4580(00)00153-6

(38) Fonseca LC, Tedrus GMAS, Carvas PN, Machado ECFA. Comparison of quantitative EEG between patients with Alzheimer’s disease and those with Parkinson's disease dementia. Clin Neurophysiol. 2013;124(10):1970-4 http://dx.doi.org/10.1016/j.clinph.2013.05.001 DOI: https://doi.org/10.1016/j.clinph.2013.05.001

(39) Andersson M, Hansson O, Minthon L, Rosén I, Londos E. Electroencephalogram Variability in Dementia with Lewy Bodies, Alzheimer’s Disease and Controls. Dement Geriatr Cogn Disord. 2008;26(3):284-290. https//doi.org/10.1159/000160962 DOI: https://doi.org/10.1159/000160962

(40) Kai T, Asai Y, Sakuma K, Koeda T, Nakashima K. Quantitative electroencephalogram analysis in dementia with Lewy bodies and Alzheimer’s disease. J Neurol Sci. 2005;237(1-2):89-95. http://doi.org/q0.1016/j.jns.2005.05.017 DOI: https://doi.org/10.1016/j.jns.2005.05.017

(41) Bonanni L, Franciotti R, Nobili F, Kramberger MG, Taylor JP, Garcia-Ptacek S, et al. EEG Markers of Dementia with Lewy Bodies: A Multicenter Cohort Study. J Alzheimers Dis. 2016;54(4):1649-57. https://doi.org/10.3233/jad-160435 DOI: https://doi.org/10.3233/JAD-160435

(42) San-Martin R, Fraga FJ, Del Percio C, Lizio R, Noce G, Nobili F, et al. Classification of Patients with Alzheimer’s Disease and Dementia with Lewy Bodies using Resting EEG Selected Features at Sensor and Source Levels: A Proof-of-Concept Study. Curr Alzheimer Res. 2021;18(12):956-69. https://doi.org/10.2174/1567205018666211027143944 DOI: https://doi.org/10.2174/1567205018666211027143944

(43) Glover GH. Overview of functional magnetic resonance imaging. Neurosurg Clin N Am. 2011;22(2):133-9. http://dx.doi.org/10.1016/j.nec.2010.11.001 DOI: https://doi.org/10.1016/j.nec.2010.11.001

(44) Bandettini PA. fMRI. Massachusetts: The MIT Press; 2020. DOI: https://doi.org/10.7551/mitpress/10584.001.0001

(45) Lee MH, Smyser CD, Shimony JS. Resting-state fMRI: a review of methods and clinical applications. AJNR Am J Neuroradiol. 2013;34(10):1866-72. http://dx.doi.org/10.3174/ajnr.A3263 DOI: https://doi.org/10.3174/ajnr.A3263

(46) Logothetis NK. What we can do and what we cannot do with fMRI. Nature. 2008;453(7197):869-78. http://dx.doi.org/10.1038/nature06976 DOI: https://doi.org/10.1038/nature06976

(47) Strangman G, Boas DA, Sutton JP. Non-invasive neuroimaging using near-infrared light. Biol Psychiatry¬. 2002;52(7):679-93. http://dx.doi.org/10.1016/s0006-3223(02)01550-0 DOI: https://doi.org/10.1016/S0006-3223(02)01550-0

(48) Ferrari M, Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage. 2012;63(2):921-35. http://dx.doi.org/10.1016/j.neuroimage.2012.03.049 DOI: https://doi.org/10.1016/j.neuroimage.2012.03.049

(49)Villringer A, Planck J, Hock C, Schleinkofer L, Dirnagl U. Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci Lett. 1993;154(1-2):101-4. http://dx.doi.org/10.1016/0304-3940(93)90181-j DOI: https://doi.org/10.1016/0304-3940(93)90181-J

(50) Morais GAZ, Balardin JB, Sato JR. fNIRS Optodes’ Location Decider (fOLD): a toolbox for probe arrangement guided by brain regions-of-interest. Sci Rep. 2018;8(1):3341. http://dx.doi.org/10.1038/s41598-018-21716-z DOI: https://doi.org/10.1038/s41598-018-21716-z

(51) Balardin JB, Morais GAZ, Furucho RA, Trambaiolli L, Vanzella P, Biazoli Jr C, et al. Imaging Brain Function with Functional Near-Infrared Spectroscopy in Unconstrained Environments. Front Hum Neurosci. 2017;11:258. http://dx.doi.org/10.3389/fnhum.2017.00258 DOI: https://doi.org/10.3389/fnhum.2017.00258

(52) Vanzella P, Balardin JB, Furucho RA, Morais GAZ, Janzen TB, Sammler D, et al. fNIRS Responses in Professional Violinists While Playing Duets: Evidence for Distinct Leader and Follower Roles at the Brain Level. Front Psychol. 2019;10:164. http://dx.doi.org/10.3389/fpsyg.2019.00164 DOI: https://doi.org/10.3389/fpsyg.2019.00164

(53) Ayaz H, Baker WB, Blaney G, Boas DA, Bortfeld H, Brady K, et al. Optical imaging and spectroscopy for the study of the human brain: status report. Neurophotonics. 2022;9(suppl 2):S24001. https://doi.org/10.1117/1.nph.9.s2.s24001 DOI: https://doi.org/10.1117/1.NPh.9.S2.S24001

(54) Aiello M, Cavaliere C, D’Albore A, Salvatore M. The Challenges of Diagnostic Imaging in the Era of Big Data. J Clin Med Res. 2019;8(3):316. http://dx.doi.org/10.3390/jcm8030316 DOI: https://doi.org/10.3390/jcm8030316

(55) Li X, Guo N, Li Q. Functional Neuroimaging in the New Era of Big Data. Genomics Proteomics Bioinformatics. 2019;17(4):393-401. http://dx.doi.org/10.1016/j.gpb.2018.11.005 DOI: https://doi.org/10.1016/j.gpb.2018.11.005

(56) Bzdok D, Schulz MA, Lindquist M. Emerging shifts in neuroimaging data analysis in the era of “big data.” In: Passos I, Mwangi B, Kapczinski F. (eds). Personalized Psychiatry. Springer; 2019. p. 99-118. https://doi.org/10.1007/978-3-030-03553-2_6 DOI: https://doi.org/10.1007/978-3-030-03553-2_6

(57) White T, Blok E, Calhoun VD. Data sharing and privacy issues in neuroimaging research: Opportunities, obstacles, challenges, and monsters under the bed. Hum Brain Mapp. 2022;43(1):278-91. http://dx.doi.org/10.1002/hbm.25120 DOI: https://doi.org/10.1002/hbm.25120

(58) Stumpo V, Kernbach JM, van Niftrik CHB, Sebök M, Fierstra J, Regli L, et al. Machine Learning Algorithms in Neuroimaging: An Overview. Acta Neurochir Suppl. 2022;134:125-38. http://dx.doi.org/10.1007/978-3-030-85292-4_17 DOI: https://doi.org/10.1007/978-3-030-85292-4_17

(59) Buchlak QD, Esmaili N, Leveque JC, Farrokhi F, Bennett C, Piccardi M, et al. Machine learning applications to clinical decision support in neurosurgery: an artificial intelligence augmented systematic review. Neurosurg Rev. 2020;43(5):1235-53. http://dx.doi.org/10.1007/s10143-019-01163-8 DOI: https://doi.org/10.1007/s10143-019-01163-8

(60) Choi KS, Sunwoo L. Artificial intelligence in neuroimaging: Clinical applications. Investig Magn Reson Imaging. 2022;26(1):1-9. https://doi.org/10.13104/imri.2022.26.1.1 DOI: https://doi.org/10.13104/imri.2022.26.1.1

(61) Lefaucheur JP. Transcranial magnetic stimulation. Handb Clin Neurol. 2019;160:559-80. http://dx.doi.org/10.1016/B978-0-444-64032-1.00037-0 DOI: https://doi.org/10.1016/B978-0-444-64032-1.00037-0

(62) Rossini PM, Rossi S. Transcranial magnetic stimulation: diagnostic, therapeutic, and research potential. Neurology. 2007;68(7):484-8. https://doi.org/10.1212/01.wnl.0000250268.13789.b2 DOI: https://doi.org/10.1212/01.wnl.0000250268.13789.b2

(63) Klomjai W, Katz R, Lackmy-Vallée A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann Phys Rehabil Med. 2015;58(4):208-13. http://dx.doi.org/10.1016/j.rehab.2015.05.005 DOI: https://doi.org/10.1016/j.rehab.2015.05.005

(64) Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120(12):2008-39. http://dx.doi.org/10.1016/j.clinph.2009.08.016 DOI: https://doi.org/10.1016/j.clinph.2009.08.016

(65) Di Lazzaro V, Rothwell J, Capogna M. Noninvasive Stimulation of the Human Brain: Activation of Multiple Cortical Circuits. Neuroscientist. 2018;24(3):246-60. http://dx.doi.org/10.1177/1073858417717660 DOI: https://doi.org/10.1177/1073858417717660

(66) Tugin S, Souza VH, Nazarova MA, Novikov PA, Tervo AE, Nieminen JO, et al. Effect of stimulus orientation and intensity on short-interval intracortical inhibition (SICI) and facilitation (SICF): A multi-channel transcranial magnetic stimulation study. PLoS One 2021;16(9):e0257554. http://doi.org/10.1371/journal.pone.0257554 DOI: https://doi.org/10.1371/journal.pone.0257554

(67) Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol. 2015;126(6):1071-107. http://dx.doi.org/10.1016/j.clinph.2015.02.001 DOI: https://doi.org/10.1016/j.clinph.2015.02.001

(68) Hallett M. Transcranial magnetic stimulation and the human brain. Nature. 2000;406(6792):147-50. http://doi.org/10.1038/35018000 DOI: https://doi.org/10.1038/35018000

(69) Darling WG, Wolf SL, Butler AJ. Variability of motor potentials evoked by transcranial magnetic stimulation depends on muscle activation. Exp Brain Res. 2006;174(2):376-85. https://doi.org/10.1007/s00221-006-0468-9 DOI: https://doi.org/10.1007/s00221-006-0468-9

(70) Thickbroom GW, Byrnes ML, Mastaglia FL. A model of the effect of MEP amplitude variation on the accuracy of TMS mapping. Clin Neurophysiol. 1999;110(5):941-3. https://doi.org/10.1016/s1388-2457(98)00080-7 DOI: https://doi.org/10.1016/S1388-2457(98)00080-7

(71) Kiers L, Cros D, Chiappa KH, Fang J. Variability of motor potentials evoked by transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol. 1993;89(6):415-23. https://doi.org/10.1016/0168-5597(93)90115-6 DOI: https://doi.org/10.1016/0168-5597(93)90115-6

(72) Vucic S, Howells J, Trevillion L, Kiernan MC. Assessment of cortical excitability using threshold tracking techniques. Muscle Nerve. 2006;33(4):477-86. https://doi.org/10.1002/mus.20481 DOI: https://doi.org/10.1002/mus.20481

(73) Samusyte G, Bostock H, Rothwell J, Koltzenburg M. Short-interval intracortical inhibition: Comparison between conventional and threshold-tracking techniques. Brain Stimul. 2018;11(4):806-17. https://doi.org/10.1016/j.brs.2018.03.002 DOI: https://doi.org/10.1016/j.brs.2018.03.002

(74) Matamala JM, Howells J, Dharmadasa T, Trinh T, Ma Y, Lera L, et al. Inter-session reliability of short-interval intracortical inhibition measured by threshold tracking TMS. Neurosci Lett. 2018;674:18-23. https://doi.org/10.1016/j.neulet.2018.02.065 DOI: https://doi.org/10.1016/j.neulet.2018.02.065

(75) Nielsen CS, Samusyte G, Pugdahl K, Blicher JU, Fuglsang-Frederiksen A, Cengiz B, et al. Test-Retest Reliability of Short-Interval Intracortical Inhibition Assessed by Threshold-Tracking and Automated Conventional Techniques. eNeuro. 2021;8(5):ENEURO.0103-21.2021. https://doi.org/10.1523/eneuro.0103-21.2021 DOI: https://doi.org/10.1523/ENEURO.0103-21.2021

(76) Huynh W, Vucic S, Krishnan AV, Lin CS, Hornberger M, Kiernan MC. Longitudinal plasticity across the neural axis in acute stroke. Neurorehabil Neural Repair. 2013;27(3):219-29. https://doi.org/10.1177/1545968312462071 DOI: https://doi.org/10.1177/1545968312462071

(77) Vucic S, Kiernan MC. Novel threshold tracking techniques suggest that cortical hyperexcitability is an early feature of motor neuron disease. Brain. 2006;129(9):2436-46. https://doi.org/10.1093/brain/awl172 DOI: https://doi.org/10.1093/brain/awl172

(78) Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Marra C, et al. Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2004;75(4):555-9. https://doi.org/10.1136/jnnp.2003.018127 DOI: https://doi.org/10.1136/jnnp.2003.018127

(79) Vucic S, Burke T, Lenton K, Ramanathan S, Gomes L, Yannikas C, et al. Cortical dysfunction underlies disability in multiple sclerosis. Mult Scler. 2012;18(4):425-32. https://doi.org/10.1177/1352458511424308 DOI: https://doi.org/10.1177/1352458511424308

(80) Vucic S, Kiernan MC. Cortical excitability testing distinguishes Kennedy's disease from amyotrophic lateral sclerosis. Clin Neurophysiol. 2008;119(5):1088-96. https://doi.org/10.1016/j.clinph.2008.01.011 DOI: https://doi.org/10.1016/j.clinph.2008.01.011

(81) Siebner HR, Bergmann TO, Bestmann S, Massimini M, Johansen-Berg H, Mochizuki H, et al. Consensus paper: combining transcranial stimulation with neuroimaging. Brain Stimul. 2009;2(2):58-80. https://doi.org/10.1016/j.brs.2008.11.002 DOI: https://doi.org/10.1016/j.brs.2008.11.002

(82) Rosanova M, Casali A, Bellina V, Resta F, Mariotti M, Massimini M. Natural frequencies of human corticothalamic circuits. J Neurosci. 2009;29(24):7679-85. https://doi.org/10.1523/jneurosci.0445-09.2009 DOI: https://doi.org/10.1523/JNEUROSCI.0445-09.2009

(83) Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G. Breakdown of cortical effective connectivity during sleep. Science. 2005;309(5744):2228-32. https://doi.org/10.1126/science.1117256 DOI: https://doi.org/10.1126/science.1117256

(84) Tremblay S, Rogasch NC, Premoli I, Blumberger DM, Casarotto S, Chen R, et al. Clinical utility and prospective of TMS-EEG. Clin Neurophysiol. 2019;130(5):802-44. https://doi.org/10.1016/j.clinph.2019.01.001 DOI: https://doi.org/10.1016/j.clinph.2019.01.001

(85) Kumar S, Zomorrodi R, Ghazala Z, Goodman MS, Blumberger DM, Cheam A, et al. Extent of Dorsolateral Prefrontal Cortex Plasticity and Its Association With Working Memory in Patients With Alzheimer Disease. JAMA Psychiatry. 2017;74(12):1266-74. https://doi.org/10.1001/jamapsychiatry.2017.3292 DOI: https://doi.org/10.1001/jamapsychiatry.2017.3292

(86) Casula EP, Stampanoni Bassi M, Pellicciari MC, Ponzo V, Veniero D, Peppe A, et al. Subthalamic stimulation and levodopa modulate cortical reactivity in Parkinson's patients. Parkinsonism Relat Disord. 2017;34:31-37. https://doi.org/10.1016/j.parkreldis.2016.10.009 DOI: https://doi.org/10.1016/j.parkreldis.2016.10.009

(87) Pellicciari MC, Bonnì S, Ponzo V, Cinnera AM, Mancini M, Casula EP, et al. Dynamic reorganization of TMS-evoked activity in subcortical stroke patients. Neuroimage. 2018;175:365-78. https://doi.org/10.1016/j.neuroimage.2018.04.011 DOI: https://doi.org/10.1016/j.neuroimage.2018.04.011

(88) Kimiskidis VK, Tsimpiris A, Ryvlin P, Kalviainen R, Koutroumanidis M, Valentin A, et al. TMS combined with EEG in genetic generalized epilepsy: A phase II diagnostic accuracy study. Clin Neurophysiol. 2017;128(2):367-81. https://doi.org/10.1016/j.clinph.2016.11.013 DOI: https://doi.org/10.1016/j.clinph.2016.11.013

(89) Kaskie RE, Ferrarelli F. Investigating the neurobiology of schizophrenia and other major psychiatric disorders with Transcranial Magnetic Stimulation. Schizophr Res. 2018;192:30-38. https://doi.org/10.1016/j.schres.2017.04.045 DOI: https://doi.org/10.1016/j.schres.2017.04.045

(90) Canali P, Casarotto S, Rosanova M, Sferrazza-Papa G, Casali AG, Gosseries O, et. Abnormal brain oscillations persist after recovery from bipolar depression. Eur Psychiatry. 2017;41:10-15. https://doi.org/10.1016/j.eurpsy.2016.10.005 DOI: https://doi.org/10.1016/j.eurpsy.2016.10.005

(91) Rosanova MT, Stamboulian D, Lede R. Systematic review: which topical agent is more efficacious in the prevention of infections in burn patients? Arch Argent Pediatr. 2012;110(4):298-303. https://doi.org/10.5546/aap.2012.eng.298 DOI: https://doi.org/10.5546/aap.2012.eng.298

(92) Casali AG, Gosseries O, Rosanova M, Boly M, Sarasso S, Casali KR, et al. A theoretically based index of consciousness independent of sensory processing and behavior. Sci Transl Med. 2013;5(198):198ra105. https://doi.org/10.1126/scitranslmed.3006294 DOI: https://doi.org/10.1126/scitranslmed.3006294

(93) Comolatti R, Pigorini A, Casarotto S, Fecchio M, Faria G, Sarasso S, et al. A fast and general method to empirically estimate the complexity of brain responses to transcranial and intracranial stimulations. Brain Stimul. 2019;12(5):1280-9. https://doi.org/10.1016/j.brs.2019.05.013 DOI: https://doi.org/10.1016/j.brs.2019.05.013

(94) Kondziella D, Bender A, Diserens K, van Erp W, Estraneo A, Formisano R, et al. European Academy of Neurology guideline on the diagnosis of coma and other disorders of consciousness. Eur J Neurol. 2020;27(5):741-56. https://doi.org/10.1111/ene.14151 DOI: https://doi.org/10.1111/ene.14151

(95) Lioumis P, Rosanova M. The role of neuronavigation in TMS-EEG studies: Current applications and future perspectives. J Neurosci Methods. 2022;380:109677. https://doi.org/10.1016/j.jneumeth.2022.109677 DOI: https://doi.org/10.1016/j.jneumeth.2022.109677

(96) Casarotto S, Fecchio M, Rosanova M, Varone G, D'Ambrosio S, Sarasso S, et al. The rt-TEP tool: real-time visualization of TMS-Evoked Potentials to maximize cortical activation and minimize artifacts. J Neurosci Methods. 2022;370:109486. https://doi.org/10.1016/j.jneumeth.2022.109486 DOI: https://doi.org/10.1016/j.jneumeth.2022.109486

(97) Rocchi L, Di Santo A, Brown K, Ibáñez J, Casula E, Rawji V, et al. Disentangling EEG responses to TMS due to cortical and peripheral activations. Brain Stimul. 2021;14(1):4-18. https://doi.org/10.1016/j.brs.2020.10.011 DOI: https://doi.org/10.1016/j.brs.2020.10.011

(98) Rogasch NC, Sullivan C, Thomson RH, Rose NS, Bailey NW, Fitzgerald PB, et al. Analysing concurrent transcranial magnetic stimulation and electroencephalographic data: A review and introduction to the open-source TESA software. Neuroimage. 2017;147:934-51. https://doi.org/10.1016/j.neuroimage.2016.10.031 DOI: https://doi.org/10.1016/j.neuroimage.2016.10.031

(99) Belardinelli P, Biabani M, Blumberger DM, Bortoletto M, Casarotto S, David O, et al. Reproducibility in TMS-EEG studies: A call for data sharing, standard procedures and effective experimental control. Brain Stimul. 2019;12(3):787-90. https://doi.org/10.1016/j.brs.2019.01.010 DOI: https://doi.org/10.1016/j.brs.2019.01.010

(100) Julkunen P, Kimiskidis VK, Belardinelli P. Bridging the gap: TMS-EEG from lab to clinic. J Neurosci Methods. 2022;369:109482. https://doi.org/10.1016/j.jneumeth.2022.109482 DOI: https://doi.org/10.1016/j.jneumeth.2022.109482

(101) Wang K, Chen H, Li X. Real-time fNIRS signal acquisition system: Compatible with TMS. Chinese Automation Congress (CAC); 2017. https://doi.org/10.1109/cac.2017.8243166 DOI: https://doi.org/10.1109/CAC.2017.8243166

(102) Oliviero A, Di Lazzaro V, Piazza O, Profice P, Pennisi MA, Della Corte F, et al. Cerebral blood flow and metabolic changes produced by repetitive magnetic brain stimulation. J Neurol. 1999;246(12):1164-8. https://doi.org/10.1007/s004150050536 DOI: https://doi.org/10.1007/s004150050536

(103) Kozel FA, Tian F, Dhamne S, Croarkin PE, McClintock SM, Elliott A, et al. Using simultaneous repetitive Transcranial Magnetic Stimulation/functional Near Infrared Spectroscopy (rTMS/fNIRS) to measure brain activation and connectivity. Neuroimage. 2009;47(4):1177-84. https://doi.org/10.1016/j.neuroimage.2009.05.016 DOI: https://doi.org/10.1016/j.neuroimage.2009.05.016

(104) Curtin A, Tong S, Sun J, Wang J, Onaral B, Ayaz H. A Systematic Review of Integrated Functional Near-Infrared Spectroscopy (fNIRS) and Transcranial Magnetic Stimulation (TMS) Studies. Front Neurosci. 2019;13:84. https://doi.org/10.3389/fnins.2019.00084 DOI: https://doi.org/10.3389/fnins.2019.00084

(105) Jiang S, Carpenter LL, Jiang H. Optical neuroimaging: advancing transcranial magnetic stimulation treatments of psychiatric disorders. Vis Comput Ind Biomed Art. 2022;5:22. https://doi.org/10.1186%2Fs42492-022-00119-y DOI: https://doi.org/10.1186/s42492-022-00119-y

(106) Burke MJ, Fried PJ, Pascual-Leone A. Transcranial magnetic stimulation: Neurophysiological and clinical applications. Handb Clin Neurol. 2019;163:73-92. https://doi.org/10.1016/b978-0-12-804281-6.00005-7 DOI: https://doi.org/10.1016/B978-0-12-804281-6.00005-7

(107) Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;325(8437):1106-7. https://doi.org/10.1016/s0140-6736(85)92413-4 DOI: https://doi.org/10.1016/S0140-6736(85)92413-4

(108) Fitzgerald PB, Daskalakis ZJ. An introduction to the basic principles of TMS and rTMS. In: Repetitive Transcranial Magnetic Stimulation Treatment for Depressive Disorders. Berlin: Springer; 2013. https://doi.org/10.1007/978-3-642-36467-9_1 DOI: https://doi.org/10.1007/978-3-642-36467-9_1

(109) Terao Y, Ugawa Y. Basic mechanisms of TMS. J Clin Neurophysiol. 2002;19(4):322-43. https://doi.org/10.1097/00004691-200208000-00006 DOI: https://doi.org/10.1097/00004691-200208000-00006

(110) Wassermann EM. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5-7, 1996. Electroencephalogr Clin Neurophysiol. 1998;108(1):1-16. https://doi.org/10.1016/s0168-5597(97)00096-8 DOI: https://doi.org/10.1016/S0168-5597(97)00096-8

(111) Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018). Clin Neurophysiol. 2020;131(2):474-528. https://doi.org/10.1016/j.clinph.2019.11.002 DOI: https://doi.org/10.1016/j.clinph.2020.02.003

(112) Cárdenas-Morales L, Nowak DA, Kammer T, Wolf RC, Schönfeldt-Lecuona C. Mechanisms and applications of theta-burst rTMS on the human motor cortex. Brain Topogr. 2010;22(4):294-306. https://doi.org/10.1007/s10548-009-0084-7 DOI: https://doi.org/10.1007/s10548-009-0084-7

(113) Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45(2):201-6. https://doi.org/10.1016/j.neuron.2004.12.033 DOI: https://doi.org/10.1016/j.neuron.2004.12.033

(114) Staubli U, Lynch G. Stable hippocampal long-term potentiation elicited by 'theta' pattern stimulation. Brain Res. 1987;435(1-2):227-34. https://doi.org/10.1016/0006-8993(87)91605-2 DOI: https://doi.org/10.1016/0006-8993(87)91605-2

(115) Rounis E, Huang YZ. Theta burst stimulation in humans: a need for better understanding effects of brain stimulation in health and disease. Exp Brain Res. 2020;238(7-8):1707-14. https://doi.org/10.1007/s00221-020-05880-1 DOI: https://doi.org/10.1007/s00221-020-05880-1

(116) Han C, Chen Z, Liu L. Commentary: Effectiveness of theta burst vs. high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomized non-inferiority trial. Front Hum Neurosci. 2018;12:255. https://doi.org/10.3389%2Ffnhum.2018.00255 DOI: https://doi.org/10.3389/fnhum.2018.00255

(117) Chung SW, Hill AT, Rogasch NC, Hoy KE, Fitzgerald PB. Use of theta-burst stimulation in changing excitability of motor cortex: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2016;63:43-64. https://doi.org/10.1016/j.neubiorev.2016.01.008 DOI: https://doi.org/10.1016/j.neubiorev.2016.01.008

(118) Di Lazzaro V, Pilati F, Dileone M, Profice P, Oliviero A, Mazzone P, et al. The physiological basis of the effects of intermittent theta burst stimulation of the human motor cortex. J Physiol. 2008;586(Pt 16):3871-79. https://doi.org/10.1113%2Fjphysiol.2008.152736 DOI: https://doi.org/10.1113/jphysiol.2008.152736

(119) Goldsworthy MR, Pitcher JB, Ridding MC. A comparison of two different continuous theta burst stimulation paradigms applied to the human primary motor cortex. Clin Neurophysiol. 2012;123(11):2256-63. https://doi.org/10.1016/j.clinph.2012.05.001 DOI: https://doi.org/10.1016/j.clinph.2012.05.001

(120) Wu SW, Shahana N, Huddleston DA, Gilbert DL. Effects of 30Hz θ burst transcranial magnetic stimulation on the primary motor cortex. J Neurosci Methods. 2012;208(2):161-4. https://doi.org/10.1016%2Fj.jneumeth.2012.05.014 DOI: https://doi.org/10.1016/j.jneumeth.2012.05.014

(121) Cole EJ, Stimpson KH, Bentzley BS, Gulser M, Cherian K, Tischler C, et al. Stanford Accelerated Intelligent Neuromodulation Therapy for Treatment-Resistant Depression. Am J Psychiatry. 2020;177(8):716-26. https://doi.org/10.1176/appi.ajp.2019.19070720 DOI: https://doi.org/10.1176/appi.ajp.2019.19070720

(122) Moukhaiber N, Summers SJ, Opar D, Imam J, Thomson D, Chang WJ, et al. The Effect of Theta Burst Stimulation Over the Primary Motor Cortex on Experimental Hamstring Pain: A Randomized, Controlled Study. J Pain. 2023; 24(4):593-604. https://doi.org/10.1016/j.jpain.2022.11.013 DOI: https://doi.org/10.1016/j.jpain.2022.11.013

(123) Moisset X, Goudeau S, Poindessous-Jazat F, Baudic S, Clavelou P, Bouhassira D. Prolonged continuous theta-burst stimulation is more analgesic than 'classical' high frequency repetitive transcranial magnetic stimulation. Brain Stimul. 2015;8(1):135-41. https://doi.org/10.1016/j.brs.2014.10.006 DOI: https://doi.org/10.1016/j.brs.2014.10.006

(124) Hong S-M, Kim S.-K, Seo M-Y, Kang S-Y. Multiple Daily Rounds of Theta-Burst Stimulation for Tinnitus: Preliminary Results. Medicina (Kaunas). 2021;57(8):743. https://doi.org/10.3390%2Fmedicina57080743 DOI: https://doi.org/10.3390/medicina57080743

(125) Nursey J, Sbisa A, Knight H, Ralph N, Cowlishaw S, Forbes D, et al. Exploring Theta Burst Stimulation for Post-traumatic Stress Disorder in Australian Veterans-A Pilot Study. Mil Med. 2020;185(9-10):e1770-e1778. https://doi.org/10.1093/milmed/usaa149 DOI: https://doi.org/10.1093/milmed/usaa149

(126) Elmaghraby R, Sun Q, Ozger C, Shekunov J, Romanowicz M, Croarkin PE. A Systematic Review of the Safety and Tolerability of Theta Burst Stimulation in Children and Adolescents. Neuromodulation. 2022;25(4):494-503. https://doi.org/10.1111/ner.13455 DOI: https://doi.org/10.1111/ner.13455

(127) Mallik G, Mishra P, Garg S, Dhyani M, Tikka SK, Tyagi P. Safety and Efficacy of Continuous Theta Burst "Intensive" Stimulation in Acute-Phase Bipolar Depression: A Pilot, Exploratory Study. J ECT. 2023;39(1):28-33. https://doi.org/10.1097/yct.0000000000000870 DOI: https://doi.org/10.1097/YCT.0000000000000870

(128) Lefaucheur JP, Wendling F. Mechanisms of action of tDCS: A brief and practical overview. Neurophysiol Clin. 2019;49(4):269-275. https://doi.org/10.1016/j.neucli.2019.07.013 DOI: https://doi.org/10.1016/j.neucli.2019.07.013

(129) Evans C, Zich C, Lee JSA, Ward N, Bestmann S. Inter-individual variability in current direction for common tDCS montages. Neuroimage. 2022;260:119501. https://doi.org/10.1016/j.neuroimage.2022.119501 DOI: https://doi.org/10.1016/j.neuroimage.2022.119501

(130) Samani MM, Agboada D, Jamil A, Kuo MF, Nitsche MA. Titrating the neuroplastic effects of cathodal transcranial direct current stimulation (tDCS) over the primary motor cortex. Cortex. 2019;119:350-361. https://doi.org/10.1016/j.cortex.2019.04.016 DOI: https://doi.org/10.1016/j.cortex.2019.04.016

(131) Datta A, Elwassif M, Battaglia F, Bikson M. Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis. J Neural Eng. 2008;5(2):163-74. https://doi.org/10.1088/1741-2560/5/2/007 DOI: https://doi.org/10.1088/1741-2560/5/2/007

(132) Ciechanski P, Carlson HL, Yu SS, Kirton A. Modeling Transcranial Direct-Current Stimulation-Induced Electric Fields in Children and Adults. Front Hum Neurosci. 2018;12:268. https://doi.org/10.3389/fnhum.2018.00268 DOI: https://doi.org/10.3389/fnhum.2018.00268

(133) Mikkonen M, Laakso I, Tanaka S, Hirata A. Cost of focality in TDCS: Interindividual variability in electric fields. Brain Stimul. 2020;13(1):117-24. https://doi.org/10.1016/j.brs.2019.09.017 DOI: https://doi.org/10.1016/j.brs.2019.09.017

(134) Caparelli-Daquer EM, Zimmermann TJ, Mooshagian E, Parra LC, Rice JK, Datta A, et al. A pilot study on effects of 4×1 high-definition tDCS on motor cortex excitability. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:735-8. https://doi.org/10.1109/embc.2012.6346036 DOI: https://doi.org/10.1109/EMBC.2012.6346036

(135) Lazarev VV, Gebodh N, Tamborino T, Bikson M, Caparelli-Daquer EM. Experimental-design Specific Changes in Spontaneous EEG and During Intermittent Photic Stimulation by High Definition Transcranial Direct Current Stimulation. Neuroscience. 2020;426:50-58. https://doi.org/10.1016/j.neuroscience.2019.11.016 DOI: https://doi.org/10.1016/j.neuroscience.2019.11.016

(136) Amaral L, Donato R, Valério D, Caparelli-Dáquer E, Almeida J, Bergströnm F. Disentangling hand and tool processing: distal effects of neuromodulation. Cortex. 2022;157:142-54. https://doi.org/10.1016/j.cortex.2022.08.011 DOI: https://doi.org/10.1016/j.cortex.2022.08.011

(137) Richardson J, Datta A, Dmochowski J, Parra LC, Fridriksson J. Feasibility of using high-definition transcranial direct current stimulation (HD-tDCS) to enhance treatment outcomes in persons with aphasia. NeuroRehabilitation. 2015;36(1):115-26. https://doi.org/10.3233/nre-141199 DOI: https://doi.org/10.3233/NRE-141199

(138) Andrade SM, Silvestre MCA, França EÉT, Queiroz MHBS, Santana KJ, Madruga MLLH, et al. Efficacy and safety of HD-tDCS and respiratory rehabilitation for critically ill patients with COVID-19 The HD-RECOVERY randomized clinical trial. Brain Stimul. 2022;15(3):780-8. https://doi.org/10.1016/j.brs.2022.05.006 DOI: https://doi.org/10.1016/j.brs.2022.05.006

(139) Machado DGS, Bikson M, Datta A, Caparelli-Dáquer E, Unal G, Baptista AF, et al. Acute effect of high-definition and conventional tDCS on exercise performance and psychophysiological responses in endurance athletes: a randomized controlled trial. Sci Rep. 2021;11(1):13911. https://doi.org/10.1038/s41598-021-92670-6 DOI: https://doi.org/10.1038/s41598-021-92670-6

(140) Santana K, França E, Sato J, Silva A, Queiroz M, Farias J, et al. Non-invasive brain stimulation for fatigue in post-acute sequelae of SARS-CoV-2 (PASC). Brain Stimul. 2023;16(1):100-7. https://doi.org/10.1016%2Fj.brs.2023.01.1672 DOI: https://doi.org/10.1016/j.brs.2023.01.1672

(141) Antal A, Paulus W. Transcranial alternating current stimulation (tACS). Front Hum Neurosci. 2013;7:317. https://doi.org/10.3389/fnhum.2013.00317 DOI: https://doi.org/10.3389/fnhum.2013.00317

(142) Tavakoli AV, Yun K. Transcranial Alternating Current Stimulation (tACS) Mechanisms and Protocols. Front Cell Neurosci. 2017;11:214. https://doi.org/10.3389/fncel.2017.00214 DOI: https://doi.org/10.3389/fncel.2017.00214

(143) Schutter DJLG, Wischnewski M. A meta-analytic study of exogenous oscillatory electric potentials in neuroenhancement. Neuropsychologia. 2016;86:110-8. https://doi.org/10.1016/j.neuropsychologia.2016.04.011 DOI: https://doi.org/10.1016/j.neuropsychologia.2016.04.011

(144) Helfrich RF, Schneider TR, Rach S, Trautmann-Lengsfeld SA, Engel AK, Herrmann CS. Entrainment of brain oscillations by transcranial alternating current stimulation. Curr Biol. 2014;24(3):333-9. https://doi.org/10.1016/j.cub.2013.12.041 DOI: https://doi.org/10.1016/j.cub.2013.12.041

(145) Ali MM, Sellers KK, Fröhlich F. Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. J Neurosci. 2013;33(27):11262-75. https://doi.org/10.1523/jneurosci.5867-12.2013 DOI: https://doi.org/10.1523/JNEUROSCI.5867-12.2013

(146) Bland NS, Sale MV. Current challenges: the ups and downs of tACS. Exp Brain Res. 2019;237(12):3071-88. https://doi.org/10.1007/s00221-019-05666-0 DOI: https://doi.org/10.1007/s00221-019-05666-0

(147) Moisa M, Polania R, Grueschow M, Ruff CC. Brain Network Mechanisms Underlying Motor Enhancement by Transcranial Entrainment of Gamma Oscillations. J Neurosci. 2016;36(47):12053-65. https://doi.org/10.1523/jneurosci.2044-16.2016 DOI: https://doi.org/10.1523/JNEUROSCI.2044-16.2016

(148) Elyamany O, Leicht G, Herrmann CS, Mulert C. Transcranial alternating current stimulation (tACS): from basic mechanisms towards first applications in psychiatry. Eur Arch Psychiatry Clin Neurosci. 2021;271(1):135-56. https://doi.org/10.1007/s00406-020-01209-9 DOI: https://doi.org/10.1007/s00406-020-01209-9

(149) Terney D, Chaieb L, Moliadze V, Antal A, Paulus W. Increasing human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci. 2008;28(52):14147-55. https://doi.org/10.1523%2FJNEUROSCI.4248-08.2008 DOI: https://doi.org/10.1523/JNEUROSCI.4248-08.2008

(150) Potok W, van der Groen O, Bächinger M, Edwards D, Wenderoth N. Transcranial Random Noise Stimulation Modulates Neural Processing of Sensory and Motor Circuits, from Potential Cellular Mechanisms to Behavior: A Scoping Review. eNeuro. 2022;9(1):ENEURO.0248-21.2021. https://doi.org/10.1523/eneuro.0248-21.2021 DOI: https://doi.org/10.1523/ENEURO.0248-21.2021

(151) Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, et al. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol. 2017;128(9):1774-1809. https://doi.org/10.1016/j.clinph.2017.06.001 DOI: https://doi.org/10.1016/j.clinph.2017.06.001

(152) Potok W, Bächinger M, van der Groen O, Cretu AL, Wenderoth N. Transcranial Random Noise Stimulation Acutely Lowers the Response Threshold of Human Motor Circuits. J Neurosci. 2021;41(17):3842-53. https://doi.org/10.1523/jneurosci.2961-20.2021 DOI: https://doi.org/10.1523/JNEUROSCI.2961-20.2021

(153) Laczó B, Antal A, Rothkegel H, Paulus W. Increasing human leg motor cortex excitability by transcranial high frequency random noise stimulation. Restor Neurol Neurosci. 2014;32(3):403-10. https://doi.org/10.3233/rnn-130367 DOI: https://doi.org/10.3233/RNN-130367

(154) Hoshi H, Kojima S, Otsuru N, Onishi H. Effects of transcranial random noise stimulation timing on corticospinal excitability and motor function. Behav Brain Res. 2021;414:113479. https://doi.org/10.1016/j.bbr.2021.113479 DOI: https://doi.org/10.1016/j.bbr.2021.113479

(155) Jooss A, Haberbosch L, Köhn A, Rönnefarth M, Bathe-Peters R, Kozarzewski L, et al. Motor Task-Dependent Dissociated Effects of Transcranial Random Noise Stimulation in a Finger-Tapping Task Versus a Go/No-Go Task on Corticospinal Excitability and Task Performance. Front Neurosci. 2019;13:161. https://doi.org/10.3389/fnins.2019.00161 DOI: https://doi.org/10.3389/fnins.2019.00161

(156) Bieck SM, Artemenko C, Moeller K, Klein E. Low to No Effect: Application of tRNS During Two-Digit Addition. Front Neurosci. 2018;12:176. https://doi.org/10.3389%2Ffnins.2018.00176 DOI: https://doi.org/10.3389/fnins.2018.00176

(157) Dissanayaka T, Zoghi M, Farrell M, Egan GF, Jaberzadeh S. Does transcranial electrical stimulation enhance corticospinal excitability of the motor cortex in healthy individuals? A systematic review and meta-analysis. Eur J Neurosci. 2017;46(4):1968-90. https://doi.org/10.1111/ejn.13640 DOI: https://doi.org/10.1111/ejn.13640

(158) di Biase L, Falato E, Di Lazzaro V. Transcranial Focused Ultrasound (tFUS) and Transcranial Unfocused Ultrasound (tUS) Neuromodulation: From Theoretical Principles to Stimulation Practices. Front. Neurol. 2019;10:549. https://doi.org/10.3389%2Ffneur.2019.00549 DOI: https://doi.org/10.3389/fneur.2019.00549

(159) Plaksin M, Shoham S, Kimmel E. Intramembrane cavitation as a predictive bio-piezoelectric mechanism for ultrasonic brain stimulation. Phys Rev X. 2014;4(1):011004. https://doi.org/10.1103/PhysRevX.4.011004 DOI: https://doi.org/10.1103/PhysRevX.4.011004

(160) Hirata H, Iida, A. Zebrafish, Medaka, and Other Small Fishes: New Model Animals in Biology, Medicine, and Beyond. Singapure: Springer; 2018. DOI: https://doi.org/10.1007/978-981-13-1879-5

(161) Gambacorta R, Iannario M. Measuring Job Satisfaction with CUB Models. Labour. 2013;27(2):198-224. https://doi.org/10.1111/labr.12008 DOI: https://doi.org/10.1111/labr.12008

(162) Dallapiazza RF, Timbie KF, Holmberg S, Gatesman J, Lopes MB, Price RJ, et al. Noninvasive neuromodulation and thalamic mapping with low-intensity focused ultrasound. J Neurosurg. 2018;128(3):875-84. https://doi.org/10.3171/2016.11.jns16976 DOI: https://doi.org/10.3171/2016.11.JNS16976

(163) Lee W, Chung YA, Jung Y, Song IU, Yoo SS. Simultaneous acoustic stimulation of human primary and secondary somatosensory cortices using transcranial focused ultrasound. BMC Neurosci. 2016;17(1):68. https://doi.org/10.1186/s12868-016-0303-6 DOI: https://doi.org/10.1186/s12868-016-0303-6

(164) Leo Ai, Mueller JK, Grant A, Eryaman Y, Wynn Legon. Transcranial focused ultrasound for BOLD fMRI signal modulation in humans. Annu Int Conf IEEE Eng Med Biol Soc. 2016;2016:1758-61. https://doi.org/10.1109/embc.2016.7591057 DOI: https://doi.org/10.1109/EMBC.2016.7591057

(165) Hameroff S, Trakas M, Duffield C, Annabi E, Gerace MB, Boyle P, et al. Transcranial ultrasound (TUS) effects on mental states: a pilot study. Brain Stimul. 2013;6(3):409-15. https://doi.org/10.1016/j.brs.2012.05.002 DOI: https://doi.org/10.1016/j.brs.2012.05.002

(166) Monti MM, Schnakers C, Korb AS, Bystritsky A, Vespa PM. Non-Invasive Ultrasonic Thalamic Stimulation in Disorders of Consciousness after Severe Brain Injury: A First-in-Man Report. Brain Stimul. 2016;9(6):940-1. https://doi.org/10.1016/j.brs.2016.07.008 DOI: https://doi.org/10.1016/j.brs.2016.07.008

(167) Jeong H, Im JJ, Park JS, Na SH, Lee W, Yoo SS, et al. A pilot clinical study of low-intensity transcranial focused ultrasound in Alzheimer's disease. Ultrasonography. 2021;40(4):512-19. https://doi.org/10.14366%2Fusg.20138 DOI: https://doi.org/10.14366/usg.20138

(168) Lipsman N, Meng Y, Bethune AJ, Huang Y, Lam B, Masellis M, et al. Blood-brain barrier opening in Alzheimer's disease using MR-guided focused ultrasound. Nat Commun. 2018;9(1):2336. https://doi.org/10.1038/s41467-018-04529-6 DOI: https://doi.org/10.1038/s41467-018-04529-6

(169) Heiskanen V, Hamblin MR. Photobiomodulation: lasers vs. light emitting diodes?. Photochem Photobiol Sci. 2018;17(8):1003-17. Erratum in: Photochem Photobiol Sci. 2019;18(1):259. https://doi.org/10.1039/c8pp90049c DOI: https://doi.org/10.1039/c8pp00176f

(170) Hamblin MR. Shining light on the head: Photobiomodulation for brain disorders. BBA Clin. 2016;6:113-24. https://doi.org/10.1016%2Fj.bbacli.2016.09.002 DOI: https://doi.org/10.1016/j.bbacli.2016.09.002

(171) Jagdeo JR, Adams LE, Brody NI, Siegel DM. Transcranial red and near infrared light transmission in a cadaveric model. PLoS One. 2012;7(10):e47460. https://doi.org/10.1371/journal.pone.0047460 DOI: https://doi.org/10.1371/journal.pone.0047460

(172) Askalsky P, Iosifescu DV. Transcranial Photobiomodulation For The Management Of Depression: Current Perspectives. Neuropsychiatr Dis Treat. 2019;15:3255-72. https://doi.org/10.2147/ndt.s188906 DOI: https://doi.org/10.2147/NDT.S188906

(173) Paolillo FR, Luccas GAA, Parizotto NA, Paolillo AR, Castro Neto JC, Bagnato VS. The effects of transcranial laser photobiomodulation and neuromuscular electrical stimulation in the treatment of post-stroke dysfunctions. J Biophotonics. 2023;16(4):e202200260. https://doi.org/10.1002/jbio.202200260 DOI: https://doi.org/10.1002/jbio.202200260

(174) Helm S, Shirsat N, Calodney A, Abd-Elsayed A, Kloth D, Soin A, et al. Peripheral Nerve Stimulation for Chronic Pain: A Systematic Review of Effectiveness and Safety. Pain Ther. 2021;10(2):985-1002. https://doi.org/10.1007/s40122-021-00306-4 DOI: https://doi.org/10.1007/s40122-021-00306-4

(175) Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405(6785):458-62. https://doi.org/10.1038/35013070 DOI: https://doi.org/10.1038/35013070

(176) Kim B, Lohman E, Yim J. Acupuncture-like Transcutaneous Electrical Nerve Stimulation for Pain, Function, and Biochemical Inflammation After Total Knee Arthroplasty. Altern Ther Health Med. 2021;27(1):28-34. Cited: PMID: 32088676.

(177) Jenkins EPW, Finch A, Gerigk M, Triantis IF, Watts C, Malliaras GG. Electrotherapies for Glioblastoma. Adv Sci (Weinh). 2021;8(18):e2100978. https://doi.org/10.1002/advs.202100978 DOI: https://doi.org/10.1002/advs.202100978

(178) Adair D, Truong D, Esmaeilpour Z, Gebodh N, Borges H, Ho L, et al. Electrical stimulation of cranial nerves in cognition and disease. Brain Stimul. 2020;13(3):717-50. https://doi.org/10.1016/j.brs.2020.02.019 DOI: https://doi.org/10.1016/j.brs.2020.02.019

(179) Koenig J, Parzer P, Haigis N, Liebemann J, Jung T, Resch F, et al. Effects of acute transcutaneous vagus nerve stimulation on emotion recognition in adolescent depression. Psychol Med. 2021;51(3):511-20. https://doi.org/10.1017/s0033291719003490 DOI: https://doi.org/10.1017/S0033291719003490

(180) Chipchase LS, Schabrun SM, Hodges PW. Peripheral electrical stimulation to induce cortical plasticity: a systematic review of stimulus parameters. Clin Neurophysiol. 2011;122(3):456-63. https://doi.org/10.1016/j.clinph.2010.07.025 DOI: https://doi.org/10.1016/j.clinph.2010.07.025

(181) Chipchase LS, Schabrun SM, Hodges PW. Corticospinal excitability is dependent on the parameters of peripheral electric stimulation: a preliminary study. Arch Phys Med Rehabil. 2011;92(9):1423-30. https://doi.org/10.1016/j.apmr.2011.01.011 DOI: https://doi.org/10.1016/j.apmr.2011.01.011

(182) Veldman MP, Maffiuletti NA, Hallett M, Zijdewind I, Hortobágyi T. Direct and crossed effects of somatosensory stimulation on neuronal excitability and motor performance in humans. Neurosci Biobehav Rev. 2014;47:22-35. https://doi.org/10.1016/j.neubiorev.2014.07.013 DOI: https://doi.org/10.1016/j.neubiorev.2014.07.013

(183) Rauck RL, Cohen SP, Gilmore CA, North JM, Kapural L, Zang RH, et al. Treatment of post-amputation pain with peripheral nerve stimulation. Neuromodulation. 2014;17(2):188-97. https://doi.org/10.1111/ner.12102 DOI: https://doi.org/10.1111/ner.12102

(184) Brito FX, Luz-Santos C, Camatti JR, Fonseca RJS, Suzarth G, Moraes LMC, et al. Electroacupuncture modulates cortical excitability in a manner dependent on the parameters used. Acupunct Med. 2022;40(2):178-85. https://doi.org/10.1177/09645284211057560 DOI: https://doi.org/10.1177/09645284211057560

(185) Papuć E, Rejdak K. The role of neurostimulation in the treatment of neuropathic pain. Ann Agric Environ Med. 2013;20(Spec 1):14-7. Cited: PMID: 25000835.

(186) Peuker ET, Filler TJ. The nerve supply of the human auricle. Clin Anat. 2002;15(1):35-7. https://doi.org/10.1002/ca.1089 DOI: https://doi.org/10.1002/ca.1089

(187) Badran BW, Yu AB, Adair D, Mappin G, DeVries WH, Jenkins DD, et al. Laboratory Administration of Transcutaneous Auricular Vagus Nerve Stimulation (taVNS): Technique, Targeting, and Considerations. J Vis Exp. 2019;(143):e58984. https://doi.org/10.3791/58984 DOI: https://doi.org/10.3791/58984-v

(188) Kreuzer PM, Landgrebe M, Husser O, Resch M, Schecklmann M, Geisreiter F, et al. Transcutaneous vagus nerve stimulation: retrospective assessment of cardiac safety in a pilot study. Front Psychiatry. 2012;3:70. https://doi.org/10.3389/fpsyt.2012.00070 DOI: https://doi.org/10.3389/fpsyt.2012.00070

(189) Kreuzer PM, Landgrebe M, Resch M, Husser O, Schecklmann M, Geisreiter F, et al. Feasibility, safety and efficacy of transcutaneous vagus nerve stimulation in chronic tinnitus: an open pilot study. Brain Stimul. 2014;7(5):740-7. https://doi.org/10.1016/j.brs.2014.05.003 DOI: https://doi.org/10.1016/j.brs.2014.05.003

(190) Badran BW, Dowdle LT, Mithoefer OJ, LaBate NT, Coatsworth J, Brown JC, et al. Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: A concurrent taVNS/fMRI study and review. Brain Stimul. 2018;11(3):492-500. https://doi.org/10.1016/j.brs.2017.12.009 DOI: https://doi.org/10.1016/j.brs.2017.12.009

(191) Wu C, Liu P, Fu H, Chen W, Cui S, Lu L, et al. Transcutaneous auricular vagus nerve stimulation in treating major depressive disorder: A systematic review and meta-analysis. Medicine. 2018;97(52):e13845. https://doi.org/10.1097/md.0000000000013845 DOI: https://doi.org/10.1097/MD.0000000000013845

(192) Shiozawa P, Silva ME, Carvalho TC, Cordeiro Q, Brunoni AR, Fregni F. Transcutaneous vagus and trigeminal nerve stimulation for neuropsychiatric disorders: a systematic review. Arq Neuropsiquiatr. 2014;72(7):542-7. https://doi.org/10.1590/0004-282x20140061 DOI: https://doi.org/10.1590/0004-282X20140061

(193) Gao Y, Zhu Y, Lu X, Wang N, Zhu S, Gong J, et al. Vagus nerve stimulation paired with rehabilitation for motor function, mental health and activities of daily living after stroke: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2023;94(4):257-66. https://doi.org/10.1136/jnnp-2022-329275 DOI: https://doi.org/10.1136/jnnp-2022-329275

(194) Straube A, Ellrich J, Eren O, Blum B, Ruscheweyh R. Treatment of chronic migraine with transcutaneous stimulation of the auricular branch of the vagal nerve (auricular t-VNS): a randomized, monocentric clinical trial. J Headache Pain. 2015;16:543. https://doi.org/10.1186/s10194-015-0543-3 DOI: https://doi.org/10.1186/s10194-015-0543-3

(195) Liu A, Rong P, Gong L, Song L, Wang X, Li L, et al. Efficacy and Safety of Treatment with Transcutaneous Vagus Nerve Stimulation in 17 Patients with Refractory Epilepsy Evaluated by Electroencephalogram, Seizure Frequency, and Quality of Life. Med Sci Monit. 2018;24:CLR8439-8448. https://doi.org/10.12659/msm.910689 DOI: https://doi.org/10.12659/MSM.910689

(196) Ylikoski J, Markkanen M, Pirvola U, Lehtimäki JA, Ylikoski M, Jing Z, et al. Stress and Tinnitus; Transcutaneous Auricular Vagal Nerve Stimulation Attenuates Tinnitus-Triggered Stress Reaction. Front Psychol. 2020;11:570196. https://doi.org/10.3389/fpsyg.2020.570196 DOI: https://doi.org/10.3389/fpsyg.2020.570196

(197) Badran BW, Jenkins DD, Cook D, Thompson S, Dancy M, DeVries WH, et al. Transcutaneous Auricular Vagus Nerve Stimulation-Paired Rehabilitation for Oromotor Feeding Problems in Newborns: An Open-Label Pilot Study. Front Hum Neurosci. 2020;14:77. https://doi.org/10.3389/fnhum.2020.00077 DOI: https://doi.org/10.3389/fnhum.2020.00077

(198) Colzato LS, Elmers J, Beste C, Hommel B. A Prospect to Ameliorate Affective Symptoms and to Enhance Cognition in Long COVID Using Auricular Transcutaneous Vagus Nerve Stimulation. J Clin Med. 2023;12(3):1198. https://doi.org/10.3390/jcm12031198 DOI: https://doi.org/10.3390/jcm12031198

(199) Badran BW, Mithoefer OJ, Summer CE, LaBate NT, Glusman CE, Badran AW, et al. Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate. Brain Stimul. 2018;11(4):699-708. https://doi.org/10.1016/j.brs.2018.04.004 DOI: https://doi.org/10.1016/j.brs.2018.04.004

(200) Ridgewell C, Heaton KJ, Hildebrandt A, Couse J, Leeder T, Neumeier WH. The effects of transcutaneous auricular vagal nerve stimulation on cognition in healthy individuals: A meta-analysis. Neuropsychology. 2021;35(4):352-65. https://doi.org/10.1037/neu0000735 DOI: https://doi.org/10.1037/neu0000735

(201) Gianlorenco ACL, Melo PS, Marduy A, Kim AY, Kim CK, Choi H, et al. Electroencephalographic Patterns in taVNS: A Systematic Review. Biomedicines. 2022;10(9):2208. https://doi.org/10.3390/biomedicines10092208 DOI: https://doi.org/10.3390/biomedicines10092208

(202) Beaulieu LD, Schneider C. Effects of repetitive peripheral magnetic stimulation on normal or impaired motor control. A review. Neurophysiol Clin. 2013;43(4):251-60. https://doi.org/10.1016/j.neucli.2013.05.003 DOI: https://doi.org/10.1016/j.neucli.2013.05.003

(203) Deng ZD, Lisanby SH, Peterchev AV. Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul. 2013;6(1):1-13. https://doi.org/10.1016/j.brs.2012.02.005 DOI: https://doi.org/10.1016/j.brs.2012.02.005

(204) Smania N, Corato E, Fiaschi A, Pietropolis P, Aglioti SM, Tinazzi. Repetitive magnetic stimulation A novel therapeutic approach for myofascial pain syndrome. J Neurology. 2005;252:307-14. https://doi.org/10.1007/s00415-005-0642-1 DOI: https://doi.org/10.1007/s00415-005-0642-1

(205) Khedr EM, Ahmed MA, Alkady EAM, Mostafa MG, Said HG. Therapeutic effects of peripheral magnetic stimulation on traumatic brachial plexopathy: clinical and neurophysiological study. Neurophysiol Clin. 2012;42(3):111-8. https://doi.org/10.1016/j.neucli.2011.11.003 DOI: https://doi.org/10.1016/j.neucli.2011.11.003

(206) Leung A, Fallah A, Shukla S. Transcutaneous magnetic stimulation (TMS) in alleviating post-traumatic peripheral neuropathic pain States: a case series. Pain Med. 2014;15(7):1196-9. https://doi.org/10.1111/pme.12426 DOI: https://doi.org/10.1111/pme.12426

(207) Knotkova H, Hamani C, Sivanesan E, Le Beuffe MFE, Moon JY, Cohen SP, et al. Neuromodulation for chronic pain. Lancet. 2021;397(10289):2111-24. https://doi.org/10.1016/s0140-6736(21)00794-7 DOI: https://doi.org/10.1016/S0140-6736(21)00794-7

(208) Krewer C, Hartl S, Müller F, Koenig E. Effects of repetitive peripheral magnetic stimulation on upper-limb spasticity and impairment in patients with spastic hemiparesis: a randomized, double-blind, sham-controlled study. Arch Phys Med Rehabil. 2014;95(6):1039-47. https://doi.org/10.1016/j.apmr.2014.02.003 DOI: https://doi.org/10.1016/j.apmr.2014.02.003

(209) Baek J, Park N, Lee B, Jee S, Yang S, Kang S. Effects of Repetitive Peripheral Magnetic Stimulation Over Vastus Lateralis in Patients After Hip Replacement Surgery. Ann Rehabil Med. 2018;42(1):67-75. https://doi.org/10.5535/arm.2018.42.1.67 DOI: https://doi.org/10.5535/arm.2018.42.1.67

(210) Hwang NK, Park JS, Choi JB, Jung YJ. Effect of Peripheral Magnetic Stimulation for Dysphagia Rehabilitation: A Systematic Review. Nutrients. 2022;14(17):3514. https://doi.org/10.3390/nu14173514 DOI: https://doi.org/10.3390/nu14173514

(211) Shin J, Yang E, Cho K, Barcenas CL, Kim WJ, Min Y, et al. Clinical application of repetitive transcranial magnetic stimulation in stroke rehabilitation. Neural Regen Res. 2012;7(8):627-34. https://doi.org/10.3969/j.issn.1673-5374.2012.08.011

(212) Steuer I, Guertin PA. Central pattern generators in the brainstem and spinal cord: an overview of basic principles, similarities and differences. Rev Neurosci. 2019;30(2):107-64. https://doi.org/10.1515/revneuro-2017-0102 DOI: https://doi.org/10.1515/revneuro-2017-0102

(213) Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358(13):1327-35. https://doi.org/10.1056/nejmoa070447 DOI: https://doi.org/10.1056/NEJMoa070447

(214) Sharshar T, Ross ET, Hopkinson NS, Porcher R, Nickol AH, Jonville S, et al. Depression of diaphragm motor cortex excitability during mechanical ventilation. J Appl Physiol. 2004;97(1):3-10. https://doi.org/10.1152/japplphysiol.01099.2003 DOI: https://doi.org/10.1152/japplphysiol.01099.2003

(215) Rizzo V, Terranova C, Crupi D, Sant'angelo A, Girlanda P, Quartarone A. Increased transcranial direct current stimulation after effects during concurrent peripheral electrical nerve stimulation. Brain Stimul. 2014;7(1):113-21. https://doi.org/10.1016/j.brs.2013.10.002 DOI: https://doi.org/10.1016/j.brs.2013.10.002

(216) Carvalho P, Goulardins JB, Sousa DMN, Barbosa CMDS, Caetano TCC, Santos LM, et al. Noninvasive Neuromodulation Techniques in Difficult Tracheostomy Weaning of Patients With Spinal Cord Injury: Report of Two Cases. Chest. 2021;159(5):e299-e302. https://doi.org/10.1016/j.chest.2020.11.065 DOI: https://doi.org/10.1016/j.chest.2020.11.065

(217) Poulard T, Dres M, Niérat MC, Rivals I, Hogrel JY, Similowski T, et al. Ultrafast ultrasound coupled with cervical magnetic stimulation for non-invasive and non-volitional assessment of diaphragm contractility. J Physiol. 2020;598(24):5627-38. https://doi.org/10.1113/jp280457 DOI: https://doi.org/10.1113/JP280457

(218) American Speech-Language-Hearing Association (ASHA). Telepractice [Internet]. Available from: www.asha.org/Practice-Portal/Professional-Issues/Telepractice/

(219) Stemmer B, Whitaker HA. Handbook of the Neuroscience of Language [Internet]. Academic Press; 2008. Available from: https://almoufakker.files.wordpress.com/2018/12/brigitte-stemmer-and-harry-whitaker-handbook-of-the-neuroscience-of-language.pdf

(220) Cappa SF. The neural basis of aphasia rehabilitation: evidence from neuroimaging and neurostimulation. Neuropsychol Rehabil. 2011;21(5):742-54. https://doi.org/10.1080/09602011.2011.614724 DOI: https://doi.org/10.1080/09602011.2011.614724

(221) Fridriksson J, Richardson JD, Fillmore P, Cai B. Left hemisphere plasticity and aphasia recovery. Neuroimage. 2012;60(2):854-63. https://doi.org/10.1016/j.neuroimage.2011.12.057 DOI: https://doi.org/10.1016/j.neuroimage.2011.12.057

(222) REhabilitation and recovery of peopLE with Aphasia after StrokE (RELEASE) Collaborators. Dosage, Intensity, and Frequency of Language Therapy for Aphasia: A Systematic Review-Based, Individual Participant Data Network Meta-Analysis. Stroke. 2022;53(3):956-67. https://doi.org/10.1161/strokeaha.121.035216 DOI: https://doi.org/10.1161/STROKEAHA.121.035216

(223) Galletta EE, Conner P, Vogel-Eyny A, Marangolo P. Use of tDCS in Aphasia Rehabilitation: A Systematic Review of the Behavioral Interventions Implemented With Noninvasive Brain Stimulation for Language Recovery. Am J Speech Lang Pathol. 2016;25(4S):S854-S867. https://doi.org/10.1044/2016_ajslp-15-0133 DOI: https://doi.org/10.1044/2016_AJSLP-15-0133

(224) Sandars M, Cloutman L, Woollams AM. Taking Sides: An Integrative Review of the Impact of Laterality and Polarity on Efficacy of Therapeutic Transcranial Direct Current Stimulation for Anomia in Chronic Poststroke Aphasia. Neural Plast. 2016;2016:8428256. https://doi.org/10.1155/2016/8428256 DOI: https://doi.org/10.1155/2016/8428256

(225) Elsner B, Kugler J, Pohl M, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving aphasia in adults with aphasia after stroke. Cochrane Database Syst Rev. 2019;5(5):CD009760. https://doi.org/10.1002/14651858.cd009760.pub4 DOI: https://doi.org/10.1002/14651858.CD009760.pub4

(226) Mendoza JA, Silva FA, Pachón MY, Rueda LC, Lopez Romero LA, Pérez M. Repetitive Transcranial Magnetic Stimulation in Aphasia and Communication Impairment in Post-Stroke: Systematic Review of Literature. J Neurol Transl Neurosci [Internet]. 2016;4(3):1070. Available from: https://www.jscimedcentral.com/jounal-article-info/Journal-of-Neurology-and-Translational-Neuroscience/Repetitive-Transcranial--Magnetic-Stimulation-in-Aphasia--and-Communication-Impairment--in-Post-Stroke%3A-Systematic--Review-of-Literature-3465#section-34455

(227) Lefaucheur JP, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol. 2017;128(1):56-92. https://doi.org/10.1016/j.clinph.2016.10.087 DOI: https://doi.org/10.1016/j.clinph.2016.10.087

(228) Zhao J, Li Y, Zhang X, Yuan Y, Cheng Y, Hou J, et al. Alteration of network connectivity in stroke patients with apraxia of speech after tDCS: A randomized controlled study. Front Neurol. 2022;13:969786. https://doi.org/10.3389/fneur.2022.969786 DOI: https://doi.org/10.3389/fneur.2022.969786

(229) Themistocleous C, Webster K, Tsapkini K. Effects of tDCS on Sound Duration in Patients with Apraxia of Speech in Primary Progressive Aphasia. Brain Sci. 2021;11(3):335. https://doi.org/10.3390/brainsci11030335 DOI: https://doi.org/10.3390/brainsci11030335

(230) Buch ER, Santarnecchi E, Antal A, Born J, Celnik PA, Classen J, et al. Effects of tDCS on motor learning and memory formation: A consensus and critical position paper. Clin Neurophysiol. 2017;128(4):589-603. https://doi.org/10.1016/j.clinph.2017.01.004 DOI: https://doi.org/10.1016/j.clinph.2017.01.004

(231) Marangolo P, Marinelli CV, Bonifazi S, Fiori V, Ceravolo MG, Provinciali L, et al. Electrical stimulation over the left inferior frontal gyrus (IFG) determines long-term effects in the recovery of speech apraxia in three chronic aphasics. Behav Brain Res. 2011;225(2):498-504. https://doi.org/10.1016/j.bbr.2011.08.008 DOI: https://doi.org/10.1016/j.bbr.2011.08.008

(232) Marangolo P, Fiori V, Cipollari S, Campana S, Razzano C, Di Paola M, et al. Bihemispheric stimulation over left and right inferior frontal region enhances recovery from apraxia of speech in chronic aphasia. Eur J Neurosci. 2013;38(9):3370-7. https://doi.org/10.1111/ejn.12332 DOI: https://doi.org/10.1111/ejn.12332

(233) Wong MN, Baig FN, Chan YK, Ng ML, Zhu FF, Kwan JSK. Transcranial direct current stimulation over the primary motor cortex improves speech production in post-stroke dysarthric speakers: A randomized pilot study. PLoS One. 2022;17(10):e0275779. https://doi.org/10.1371/journal.pone.0275779 DOI: https://doi.org/10.1371/journal.pone.0275779

(234) França C, Andrade DC, Teixeira MJ, Galhardoni R, Silva V, Barbosa ER, et al. Effects of cerebellar neuromodulation in movement disorders: A systematic review. Brain Stimul. 2018;11(2):249-60. https://doi.org/10.1016/j.brs.2017.11.015 DOI: https://doi.org/10.1016/j.brs.2017.11.015

(235) Murdoch BE, Ng ML, Barwood CH. Treatment of articulatory dysfunction in Parkinson's disease using repetitive transcranial magnetic stimulation. Eur J Neurol. 2012;19(2):340-7. https://doi.org/10.1111/j.1468-1331.2011.03524.x Retraction in: Murdoch BE, Ng ML, Barwood CH. Eur J Neurol. 2013;20(11):1497. https://doi.org/10.1111/ene.12276 DOI: https://doi.org/10.1111/j.1468-1331.2011.03524.x

(236) Khedr EM, Abdel-Fadeil MR, El-Khilli F, Ibrahim MQ. Impaired corticolingual pathways in patients with or without dysarthria after acute monohemispheric stroke. Neurophysiol Clin. 2005;35(2-3):73-80. https://doi.org/10.1016/j.neucli.2005.03.003 DOI: https://doi.org/10.1016/j.neucli.2005.03.003

(237) Balzan P, Tattersall C, Palmer R. Non-invasive brain stimulation for treating neurogenic dysarthria: A systematic review. Ann Phys Rehabil Med. 2022;65(5):101580. https://doi.org/10.1016/j.rehab.2021.101580 DOI: https://doi.org/10.1016/j.rehab.2021.101580

(238) Murdoch BE, Barwood CH. Non-invasive brain stimulation: a new frontier in the treatment of neurogenic speech-language disorders. Int J Speech Lang Pathol. 2013;15(3):234-44. https://doi.org/10.3109/17549507.2012.745605 DOI: https://doi.org/10.3109/17549507.2012.745605

(239) Razza LB, Afonso Dos Santos L, Borrione L, Bellini H, Branco LC, Cretaz E, et al. Appraising the effectiveness of electrical and magnetic brain stimulation techniques in acute major depressive episodes: an umbrella review of meta-analyses of randomized controlled trials. Braz J Psychiatry. 2021;43(5):514-24. https://doi.org/10.1590/1516-4446-2020-1169 DOI: https://doi.org/10.1590/1516-4446-2020-1169

(240) Kennedy SH, Lam RW, McIntyre RS, Tourjman SV, Bhat V, Blier P, et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 Clinical Guidelines for the Management of Adults with Major Depressive Disorder: Section 3. Pharmacological Treatments. Can J Psychiatry. 2016;61(9):540-60. https://doi.org/10.1177/0706743716659417 DOI: https://doi.org/10.1177/0706743716659417

(241) Rush AJ, Trivedi MH, Wisniewski SR, Stewart JW, Nierenberg AA, Thase ME, et al. Bupropion-SR, sertraline, or venlafaxine-XR after failure of SSRIs for depression. N Engl J Med. 2006;354(12):1231-42. https://doi.org/10.1056/nejmoa052963 DOI: https://doi.org/10.1056/NEJMoa052963

(242) Keller MB, McCullough JP, Klein DN, Arnow B, Dunner DL, Gelenberg AJ, et al. A comparison of nefazodone, the cognitive behavioral-analysis system of psychotherapy, and their combination for the treatment of chronic depression. N Engl J Med. 2000;342(20):1462-70. https://doi.org/10.1056/nejm200005183422001 DOI: https://doi.org/10.1056/NEJM200005183422001

(243) Baeken C, Brem AK, Arns M, Brunoni AR, Filipčić I, Ganho-Ávila, et al. Repetitive transcranial magnetic stimulation treatment for depressive disorders: current knowledge and future directions. Curr Opin Psychiatry. 2019;32(5):409-15. https://doi.org/10.1097/yco.0000000000000533 DOI: https://doi.org/10.1097/YCO.0000000000000533

(244) Brunoni AR, Teng CT, Correa C, Imamura M, Brasil-Neto JP, Boechat R, et al. Neuromodulation approaches for the treatment of major depression: challenges and recommendations from a working group meeting. Arq Neuropsiquiatr. 2010;68(3):433-51. https://doi.org/10.1590/s0004-282x2010000300021 DOI: https://doi.org/10.1590/S0004-282X2010000300021

(245) Charlson F, van Ommeren M, Flaxman A, Cornett J, Whiteford H, Saxena S. New WHO prevalence estimates of mental disorders in conflict settings: a systematic review and meta-analysis. Lancet. 2019;394(10194):240-48. https://doi.org/10.1016/s0140-6736(19)30934-1 DOI: https://doi.org/10.1016/S0140-6736(19)30934-1

(246) Mulder RT. ICD-11 Personality Disorders: Utility and Implications of the New Model. Front Psychiatry. 2021;12:655548. https://doi.org/10.3389/fpsyt.2021.655548 DOI: https://doi.org/10.3389/fpsyt.2021.655548

(247) American Psychiatric Association (APA). DSM-5: Manual Diagnóstico e Estatístico de Transtornos Mentais. Porto Alegre: Artmed; 2014.

(248) Rush AJ. The varied clinical presentations of major depressive disorder. J Clin Psychiatry. 2007;68(suppl 8):4-10. Cited: PMID: 17640152

(249) Hyde J, Carr H, Kelley N, Seneviratne R, Reed C, Parlatini V, et al. Efficacy of neurostimulation across mental disorders: Systematic review and meta-analysis of 208 randomized controlled trials. Molecular Psychiatry. 2022;27(6):2709-19. https://doi.org/10.1038/s41380-022-01524-8 DOI: https://doi.org/10.1038/s41380-022-01524-8

(250) Sá KN, Baptista RF, Shirahige L, Razza LB, Nogueira M, Coura MHF, et al. Evidence-based umbrella review of non-invasive brain stimulation in anxiety disorders. Eur J Psychiatry. 2023;37(3):167-81. https://doi.org/10.1016/j.ejpsy.2023.01.001 DOI: https://doi.org/10.1016/j.ejpsy.2023.01.001

(251) Cox J, Thakur B, Alvarado L, Shokar N, Thompson PM, Dwivedi AK. Repetitive transcranial magnetic stimulation for generalized anxiety and panic disorders: A systematic review and meta-analysis. Ann Clin Psychiatry. 2022;34(2):e2-e24. https://doi.org/10.12788/acp.0050 DOI: https://doi.org/10.12788/acp.0067

(252) Khan S, Liu J, Xue M. Transmission of SARS-CoV-2, Required Developments in Research and Associated Public Health Concerns. Front Med. 2020;7:310. https://doi.org/10.3389/fmed.2020.00310 DOI: https://doi.org/10.3389/fmed.2020.00310

(253) Fitzsimmons SMDD, van der Werf YD, van Campen AD, Arns M, Sack AT, Hoogendoorn AW, et al. Repetitive transcranial magnetic stimulation for obsessive-compulsive disorder: A systematic review and pairwise/network meta-analysis. J Affect Disord. 2022;302:302-312. https://doi.org/10.1016/j.jad.2022.01.048 DOI: https://doi.org/10.1016/j.jad.2022.01.048

(254) Li H, Wang J, Li C, Xiao Z. Repetitive transcranial magnetic stimulation (rTMS) for panic disorder in adults. Cochrane Database Syst Rev. 2014;(9):CD009083. https://doi.org/10.1002%2F14651858.CD009083.pub2 DOI: https://doi.org/10.1002/14651858.CD009083.pub2

(255) American Psychiatric Association. Neurocognitive disorders – supplement. Updated excerpts for delirium codes major and mild neurocognitive disorders. Washington: American Psychiatric Association Publishing; 2022.

(256) Chen J, Qin J, He Q, Zou Z. A Meta-Analysis of Transcranial Direct Current Stimulation on Substance and Food Craving: What Effect Do Modulators Have?. Front Psychiatry. 2020;11:598. https://doi.org/10.3389/fpsyt.2020.00598 DOI: https://doi.org/10.3389/fpsyt.2020.00598

(257) Song S, Zilverstand A, Gui W, Pan X, Zhou X. Reducing craving and consumption in individuals with drug addiction, obesity or overeating through neuromodulation intervention: a systematic review and meta-analysis of its follow-up effects. Addiction. 2022;117(5):1242-55. https://doi.org/10.1111/add.15686 DOI: https://doi.org/10.1111/add.15686

(258) Kang N, Kim RK, Kim HJ. Effects of transcranial direct current stimulation on symptoms of nicotine dependence: A systematic review and meta-analysis. Addict Behav. 2019;96:133-139. https://doi.org/10.1016/j.addbeh.2019.05.006 DOI: https://doi.org/10.1016/j.addbeh.2019.05.006

(259) Tseng PT, Zeng BS, Hung CM, Liang CS, Stubbs B, Carvalho AF, et al. Assessment of Noninvasive Brain Stimulation Interventions for Negative Symptoms of Schizophrenia: A Systematic Review and Network Meta-analysis. JAMA Psychiatry. 2022;79(8):770-9. https://doi.org/10.1001/jamapsychiatry.2022.1513 DOI: https://doi.org/10.1001/jamapsychiatry.2022.1513

(260) Silva RCB. Schizophrenia: a review. Psicol USP. 2006;17(4):263-85. https://doi.org/10.1590/S0103-65642006000400014 DOI: https://doi.org/10.1590/S0103-65642006000400014

(261) Kennedy NI, Lee WH, Frangou S. Efficacy of non-invasive brain stimulation on the symptom dimensions of schizophrenia: A meta-analysis of randomized controlled trials. Eur Psychiatry. 2018;49:69-77. https://doi.org/10.1016/j.eurpsy.2017.12.025 DOI: https://doi.org/10.1016/j.eurpsy.2017.12.025

(262) Pelletier R, Higgins J, Bourbonnais D. Addressing Neuroplastic Changes in Distributed Areas of the Nervous System Associated With Chronic Musculoskeletal Disorders. Phys Ther. 2015;95(11):1582-91. https://doi.org/10.2522/ptj.20140575 DOI: https://doi.org/10.2522/ptj.20140575

(263) Caumo W, Deitos A, Carvalho S, Leite J, Carvalho F, Dussán-Sarria JA, et al. Motor Cortex Excitability and BDNF Levels in Chronic Musculoskeletal Pain According to Structural Pathology. Front Hum Neurosci. 2016;10:357. https://doi.org/10.3389/fnhum.2016.00357 DOI: https://doi.org/10.3389/fnhum.2016.00357

(264) Rodriguez KM, Palmieri-Smith RM, Krishnan C. How does anterior cruciate ligament reconstruction affect the functioning of the brain and spinal cord? A systematic review with meta-analysis. J Sport Health Sci. 2021;10(2):172-81. https://doi.org/10.1016/j.jshs.2020.07.005 DOI: https://doi.org/10.1016/j.jshs.2020.07.005

(265) Harkey MS, Gribble PA, Pietrosimone BG. Disinhibitory interventions and voluntary quadriceps activation: a systematic review. J Athl Train. 2014;49(3):411-21. https://doi.org/10.4085/1062-6050-49.1.04 DOI: https://doi.org/10.4085/1062-6050-49.1.04

(266) Tanwar S, Mattoo B, Kumar U, Bhatia R. Repetitive transcranial magnetic stimulation of the prefrontal cortex for fibromyalgia syndrome: a randomised controlled trial with 6-months follow up. Adv Rheumatol. 2020;60(1):34. https://doi.org/10.1186/s42358-020-00135-7 DOI: https://doi.org/10.1186/s42358-020-00135-7

(267) Silva-Filho E, Okano AH, Morya E, Albuquerque J, Cacho E, Unal G, et al. Neuromodulation treats Chikungunya arthralgia: a randomized controlled trial. Sci Rep. 2018;8(1):16010. https://doi.org/10.1038/s41598-018-34514-4 DOI: https://doi.org/10.1038/s41598-018-34514-4

(268) Silva TSF, Galdino MKC, Andrade SMMS, Lucena LBS, Aranha RELB, Rodrigues ETA. Use of non-invasive neuromodulation in the treatment of pain in temporomandibular dysfunction: preliminary study. Braz J Pain. 2019;2(2):147-54. http://dx.doi.org/10.5935/2595-0118.20190027 DOI: https://doi.org/10.5935/2595-0118.20190027

(269) Fidalgo-Martin I, Ramos-Álvarez JJ, Murias-Lozano R, Rodríguez-López ES. Effects of percutaneous neuromodulation in neuromusculoskeletal pathologies: A systematic review. Medicine. 2022;101(41):e31016. https://doi.org/10.1097/md.0000000000031016 DOI: https://doi.org/10.1097/MD.0000000000031016

(270) Arias-Buría JL, Cleland JA, El Bachiri YR, Plaza-Manzano G, Fernández-de-Las-Peñas C. Ultrasound-Guided Percutaneous Electrical Nerve Stimulation of the Radial Nerve for a Patient With Lateral Elbow Pain: A Case Report With a 2-Year Follow-up. J Orthop Sports Phys Ther. 2019;49(5):347-54. https://doi.org/10.2519/jospt.2019.8570 DOI: https://doi.org/10.2519/jospt.2019.8570

(271) Misse RG, Borges IBP, Santos AM, Gupta L, Shinjo SK. Effect of exercise training on fatigue and pain in patients with systemic autoimmune myopathies: A systematic review. Autoimmun Rev. 2021;20(10):102897. https://doi.org/10.1016/j.autrev.2021.102897 DOI: https://doi.org/10.1016/j.autrev.2021.102897

(272) Goërtz YMJ, Braamse AMJ, Spruit MA, Janssen DJA, Ebadi Z, Van Herck M, et al. Fatigue in patients with chronic disease: results from the population-based Lifelines Cohort Study. Sci Rep. 2021;11(1):20977. https://doi.org/10.1038/s41598-021-00337-z DOI: https://doi.org/10.1038/s41598-021-00337-z

(273) Liu XG. Normalization of Neuroinflammation: A New Strategy for Treatment of Persistent Pain and Memory/Emotional Deficits in Chronic Pain. J Inflamm Res. 2022;15:5201-33. https://doi.org/10.2147/jir.s379093 DOI: https://doi.org/10.2147/JIR.S379093

(274) Nijs J, Torres-Cueco R, van Wilgen CP, Girbes EL, Struyf F, Roussel N, et al. Applying modern pain neuroscience in clinical practice: criteria for the classification of central sensitization pain. Pain Physician. 2014;17(5):447-57. Cited: PMID: 25247901. DOI: https://doi.org/10.36076/ppj.2014/17/447

(275) Suchting R, Teixeira AL, Ahn B, Colpo GD, Park J, Ahn H. Changes in Brain-derived Neurotrophic Factor From Active and Sham Transcranial Direct Current Stimulation in Older Adults With Knee Osteoarthritis. Clin J Pain. 2021;37(12):898-903. https://doi.org/10.1097/ajp.0000000000000987 DOI: https://doi.org/10.1097/AJP.0000000000000987

(276) Lloyd DM, Wittkopf PG, Arendsen LJ, Jones AKP. Is Transcranial Direct Current Stimulation (tDCS) Effective for the Treatment of Pain in Fibromyalgia? A Systematic Review and Meta-Analysis. J Pain. 2020;21(11-12):1085-100. https://doi.org/10.1016/j.jpain.2020.01.003 DOI: https://doi.org/10.1016/j.jpain.2020.01.003

(277) Pinto ACPN, Piva SR, Vieira AGS, Gomes SGCN, Rocha AP, Tavares DRB, et al. Transcranial direct current stimulation for fatigue in patients with Sjogren's syndrome: A randomized, double-blind pilot study. Brain Stimul. 2021;14(1):141-51. https://doi.org/10.1016/j.brs.2020.12.004 DOI: https://doi.org/10.1016/j.brs.2020.12.004

(278) Misse RG, Santos AM, Baptista AF, Shinjo SK. Transcranial direct current stimulation is safe and relieves post-herpetic neuralgia in patient with dermatomyositis: A case report. Open J Rheumatol Autoimmun Dis. 2022;12(4):114-18. https://doi.org/10.4236/ojra.2022.124012 DOI: https://doi.org/10.4236/ojra.2022.124012

(279) Sousa LFA, Missé RG, Santos LM, Tanaka C, Greve JMA, Baptista AF, Shinjo SK. Transcranial direct current stimulation is safe and effective in autoimmune myopathies: a randomised, double-blind, sham-controlled trial. Clin Exp Rheumatol. 2023;41(2):221-29. https://doi.org/10.55563/clinexprheumatol/qjm9hb DOI: https://doi.org/10.55563/clinexprheumatol/qjm9hb

(280) Shiozawa P, Silva ME, Raza R, Uchida RR, Cordeiro Q, Fregni F, et al. Safety of repeated transcranial direct current stimulation in impaired skin: a case report. J ECT. 2013;29(2):147-8. https://doi.org/10.1097/yct.0b013e318279c1a1 DOI: https://doi.org/10.1097/YCT.0b013e318279c1a1

(281) Feigin VL, Norrving B, Mensah GA. Global Burden of Stroke. Circ Res. 2017;120(3):439-48. https://doi.org/10.1161/circresaha.116.308413 DOI: https://doi.org/10.1161/CIRCRESAHA.116.308413

(282) Cortes M, Black-Schaffer RM, Edwards DJ. Transcranial magnetic stimulation as an investigative tool for motor dysfunction and recovery in stroke: an overview for neurorehabilitation clinicians. Neuromodulation. 2012;15(4):316-25. https://doi.org/10.1111/j.1525-1403.2012.00459.x DOI: https://doi.org/10.1111/j.1525-1403.2012.00459.x

(283) Shen QR, Hu MT, Feng W, Li KP, Wang W. Narrative Review of Noninvasive Brain Stimulation in Stroke Rehabilitation. Med Sci Monit. 2022;28:e938298. https://doi.org/10.12659/msm.938298 DOI: https://doi.org/10.12659/MSM.938298

(284) Boato F, Guan X, Zhu Y, Ryu Y, Voutounou M, Rynne C, et al. Activation of MAP2K signaling by genetic engineering or HF-rTMS promotes corticospinal axon sprouting and functional regeneration. Sci Transl Med. 2023;15(677):eabq6885. https://doi.org/10.1126/scitranslmed.abq6885 DOI: https://doi.org/10.1126/scitranslmed.abq6885

(285) Turnbull C, Boomsma A, Milte R, Stanton TR, Hordacre B. Safety and Adverse Events following Non-invasive Electrical Brain Stimulation in Stroke: A Systematic Review. Top Stroke Rehabil. 2023;30(4):355-67. https://doi.org/10.1080/10749357.2022.2058294 DOI: https://doi.org/10.1080/10749357.2022.2058294

(286) Kakuda W, Abo M, Sasanuma J, Shimizu M, Okamoto T, Kimura C, et al. Combination Protocol of Low-Frequency rTMS and Intensive Occupational Therapy for Post-stroke Upper Limb Hemiparesis: a 6-year Experience of More Than 1700 Japanese Patients. Transl Stroke Res. 2016;7(3):172-9. https://doi.org/10.1007/s12975-016-0456-8 DOI: https://doi.org/10.1007/s12975-016-0456-8

(287) O'Brien AT, Bertolucci F, Torrealba-Acosta G, Huerta R, Fregni F, Thibaut A. Non-invasive brain stimulation for fine motor improvement after stroke: a meta-analysis. Eur J Neurol. 2018;25(8):1017-26. https://doi.org/10.1111/ene.13643 DOI: https://doi.org/10.1111/ene.13643

(288) Zumbansen A, Black SE, Chen JL, J Edwards D, Hartmann A, Heiss WD, et al. Non-invasive brain stimulation as add-on therapy for subacute post-stroke aphasia: a randomized trial (NORTHSTAR). Eur Stroke J. 2020;5(4):402-13. https://doi.org/10.1177/2396987320934935 DOI: https://doi.org/10.1177/2396987320934935

(289) Wang T, Dong L, Cong X, Luo H, Li W, Meng P, et al. Comparative efficacy of non-invasive neurostimulation therapies for poststroke dysphagia: A systematic review and meta-analysis. Neurophysiol Clin. 2021;51(6):493-506. https://doi.org/10.1016/j.neucli.2021.02.006 DOI: https://doi.org/10.1016/j.neucli.2021.02.006

(290) Li KP, Sun J, Wu CQ, An XF, Wu JJ, Zheng MX, et al. Effects of repetitive transcranial magnetic stimulation on post-stroke patients with cognitive impairment: A systematic review and meta-analysis. Behav Brain Res. 2023;15;439:114229. https://doi.org/10.1016/j.bbr.2022.114229 DOI: https://doi.org/10.1016/j.bbr.2022.114229

(291) Hildesheim FE, Silver AN, Dominguez-Vargas AU, Andrushko JW, Edwards JD, Dancause N, et al. Predicting Individual Treatment Response to rTMS for Motor Recovery After Stroke: A Review and the CanStim Perspective. Front Rehabil Sci. 2022;3:795335. https://doi.org/10.3389/fresc.2022.795335 DOI: https://doi.org/10.3389/fresc.2022.795335

(292) Liu C, Wang M, Liang X, Xue J, Zhang G. Efficacy and Safety of High-Frequency Repetitive Transcranial Magnetic Stimulation for Poststroke Depression: A Systematic Review and Meta-analysis. Arch Phys Med Rehabil. 2019;100(10):1964-75. https://doi.org/10.1016/j.apmr.2019.03.012 DOI: https://doi.org/10.1016/j.apmr.2019.03.012

(293) Hara T, Shanmugalingam A, McIntyre A, Burhan AM. The Effect of Non-Invasive Brain Stimulation (NIBS) on Executive Functioning, Attention and Memory in Rehabilitation Patients with Traumatic Brain Injury: A Systematic Review. Diagnostics. 2021;11(4):627. https://doi.org/10.3390/diagnostics11040627 DOI: https://doi.org/10.3390/diagnostics11040627

(294) Di Pino G, Pellegrino G, Assenza G, Capone F, Ferreri F, Formica D, et al. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nat Rev Neurol. 2014;10(10):597-608. https://doi.org/10.1038/nrneurol.2014.162 DOI: https://doi.org/10.1038/nrneurol.2014.162

(295) Grefkes C, Fink GR. Recovery from stroke: current concepts and future perspectives. Neurol Res Pract. 2020;2:17. https://doi.org/10.1186/s42466-020-00060-6 DOI: https://doi.org/10.1186/s42466-020-00060-6

(296) Postuma RB, Aarsland D, Barone P, Burn DJ, Hawkes CH, Oertel W, et al. Identifying prodromal Parkinson's disease: pre-motor disorders in Parkinson's disease. Mov Disord. 2012;27(5):617-26. https://doi.org/10.1002/mds.24996 DOI: https://doi.org/10.1002/mds.24996

(297) Goodwill AM, Lum JAG, Hendy AM, Muthalib M, Johnson L, Albein-Urios N, et al. Using non-invasive transcranial stimulation to improve motor and cognitive function in Parkinson's disease: a systematic review and meta-analysis. Sci Rep. 2017;7(1):14840. https://doi.org/10.1038/s41598-017-13260-z DOI: https://doi.org/10.1038/s41598-017-13260-z

(298) Li S, Jiao R, Zhou X, Chen S. Motor recovery and antidepressant effects of repetitive transcranial magnetic stimulation on Parkinson disease: A PRISMA-compliant meta-analysis. Medicine. 2020;99(18):e19642. https://doi.org/10.1097/md.0000000000019642 DOI: https://doi.org/10.1097/MD.0000000000019642

(299) Zhang W, Deng B, Xie F, Zhou H, Guo JF, Jiang H, et al. Efficacy of repetitive transcranial magnetic stimulation in Parkinson's disease: A systematic review and meta-analysis of randomised controlled trials. eClinicalMedicine. 2022;52:101589. https://doi.org/10.1016/j.eclinm.2022.101589 DOI: https://doi.org/10.1016/j.eclinm.2022.101589

(300) Beretta VS, Conceição NR, Nóbrega-Sousa P, Orcioli-Silva D, Dantas LKBF, Gobbi LTB, et al. Transcranial direct current stimulation combined with physical or cognitive training in people with Parkinson’s disease: a systematic review. J Neuroeng Rehabil. 2020;17(1):74. https://doi.org/10.1186/s12984-020-00701-6 DOI: https://doi.org/10.1186/s12984-020-00701-6

(301) Deng S, Dong Z, Pan L, Liu Y, Ye Z, Qin L, et al. Effects of repetitive transcranial magnetic stimulation on gait disorders and cognitive dysfunction in Parkinson's disease: A systematic review with meta-analysis. Brain Behav. 2022;12(8):e2697. https://doi.org/10.1002/brb3.2697 DOI: https://doi.org/10.1002/brb3.2697

(302) Wu Y, Cao XB, Zeng WQ, Zhai H, Zhang XQ, Yang XM, et al. Transcranial Magnetic Stimulation Alleviates Levodopa-Induced Dyskinesia in Parkinson’s Disease and the Related Mechanisms: A Mini-Review. Front Neurol. 2021;12:758345. https://doi.org/10.3389/fneur.2021.758345 DOI: https://doi.org/10.3389/fneur.2021.758345

(303) Fregni F, El-Hagrassy MM, Pacheco-Barrios K, Carvalho S, Leite J, Simis M, et al. Evidence-Based Guidelines and Secondary Meta-Analysis for the Use of Transcranial Direct Current Stimulation in Neurological and Psychiatric Disorders. Int J Neuropsychopharmacol. 2021;24(4):256-313. https://doi.org/10.1093/ijnp/pyaa051 DOI: https://doi.org/10.1093/ijnp/pyaa051

(304) Dinkelbach L, Brambilla M, Manenti R, Brem AK. Non-invasive brain stimulation in Parkinson's disease: Exploiting crossroads of cognition and mood. Neurosci Biobehav Rev. 2017;75:407-18. https://doi.org/10.1016/j.neubiorev.2017.01.021 DOI: https://doi.org/10.1016/j.neubiorev.2017.01.021

(305) Chen J, He P, Zhang Y, Gao Y, Qiu Y, Li Y, et al. Non-pharmacological treatment for Parkinson disease patients with depression: a meta-analysis of repetitive transcranial magnetic stimulation and cognitive-behavioral treatment. Int J Neurosci. 2021;131(4):411-24. https://doi.org/10.1080/00207454.2020.1744591 DOI: https://doi.org/10.1080/00207454.2020.1744591

(306) Sasegbon A, Smith CJ, Bath P, Rothwell J, Hamdy S. The effects of unilateral and bilateral cerebellar rTMS on human pharyngeal motor cortical activity and swallowing behavior. Exp Brain Res. 2020;238(7-8):1719-33. https://doi.org/10.1007/s00221-020-05787-x DOI: https://doi.org/10.1007/s00221-020-05787-x

(307) Simons A, Hamdy S. The Use of Brain Stimulation in Dysphagia Management. Dysphagia. 2017;32(2):209-15. https://doi.org/10.1007/s00455-017-9789-z DOI: https://doi.org/10.1007/s00455-017-9789-z

(308) Doeltgen SH, Rigney L, Cock C, Omari T. Effects of cortical anodal transcranial direct current stimulation on swallowing biomechanics. Neurogastroenterol Motil. 2018;30(11):e13434. https://doi.org/10.1111/nmo.13434 DOI: https://doi.org/10.1111/nmo.13434

(309) Yamamura K, Kurose M, Okamoto K. Guide to Enhancing Swallowing Initiation: Insights from Findings in Healthy Subjects and Dysphagic Patients. Curr Phys Med Rehabil Rep. 2018;6(3):178-85. https://doi.org/10.1007/s40141-018-0192-y DOI: https://doi.org/10.1007/s40141-018-0192-y

(310) Marchina S, Pisegna JM, Massaro JM, Langmore SE, McVey C, Wang J, et al. Transcranial direct current stimulation for post-stroke dysphagia: a systematic review and meta-analysis of randomized controlled trials. J Neurol. 2021;268(1):293-304. https://doi.org/10.1007/s00415-020-10142-9 DOI: https://doi.org/10.1007/s00415-020-10142-9

(311) Zhao N, Sun W, Xiao Z, Fan C, Zeng B, Xu K, et al. Effects of Transcranial Direct Current Stimulation on Poststroke Dysphagia: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Arch Phys Med Rehabil. 2022;103(7):1436-47. https://doi.org/10.1016/j.apmr.2022.03.004 DOI: https://doi.org/10.1016/j.apmr.2022.03.004

(312) Peter N, Kleinjung T. Neuromodulation for tinnitus treatment: an overview of invasive and non-invasive techniques. J Zhejiang Univ Sci B. 2019;20(2):116-30. https://doi.org/10.1631/jzus.b1700117 DOI: https://doi.org/10.1631/jzus.B1700117

(313) Langguth B. Non-Invasive Neuromodulation for Tinnitus. J Audiol Otol. 2020;24(3):113-18. https://doi.org/10.7874/jao.2020.00052 DOI: https://doi.org/10.7874/jao.2020.00052

(314) Lefebvre-Demers M, Doyon N, Fecteau S. Non-invasive neuromodulation for tinnitus: A meta-analysis and modeling studies. Brain Stimul. 2021;14(1):113-28. https://doi.org/10.1016/j.brs.2020.11.014 DOI: https://doi.org/10.1016/j.brs.2020.11.014

(315) Denton AJ, Finberg A, Ashman PE, Bencie NB, Scaglione T, Kuzbyr B, et al. Implications of Transcranial Magnetic Stimulation as a Treatment Modality for Tinnitus. J Clin Med. 2021;10(22):5422. https://doi.org/10.3390/jcm10225422 DOI: https://doi.org/10.3390/jcm10225422

(316) Deklerck AN, Marechal C, Fernández AMP, Keppler H, Van Roost D, Dhooge IJM. Invasive Neuromodulation as a Treatment for Tinnitus: A Systematic Review. Neuromodulation. 2020;23(4):451-62. https://doi.org/10.1111/ner.13042 DOI: https://doi.org/10.1111/ner.13042

(317) Liang Z, Yang H, Cheng G, Huang L, Zhang T, Jia H. Repetitive transcranial magnetic stimulation on chronic tinnitus: a systematic review and meta-analysis. BMC Psychiatry. 2020;20(1):547. https://doi.org/10.1186/s12888-020-02947-9 DOI: https://doi.org/10.1186/s12888-020-02947-9

(318) De Ridder D, van der Loo E, Van der Kelen K, Menovsky T, Van de Heyning P, Moller A. Theta, alpha and beta burst transcranial magnetic stimulation: brain modulation in tinnitus. Int J Med Sci. 2007;4(5):237-41. https://doi.org/10.7150/ijms.4.237 DOI: https://doi.org/10.7150/ijms.4.237

(319) Peng L, Tian L, Wang T, Wang Q, Li N, Zhou H. Effects of non-invasive brain stimulation (NIBS) for executive function on subjects with ADHD: a protocol for a systematic review and meta-analysis. BMJ Open. 2023;13(3):e069004. https://doi.org/10.1136/bmjopen-2022-069004 DOI: https://doi.org/10.1136/bmjopen-2022-069004

(320) Saki N, Bayat A, Nikakhlagh S, Mirmomeni G. Vestibular rehabilitation therapy in combination with transcranial direct current stimulation (tDCS) for treatment of chronic vestibular dysfunction in the elderly: a double-blind randomized controlled trial. Braz J Otorhinolaryngol. 2022;88(5):758-66. https://doi.org/10.1016/j.bjorl.2020.11.004 DOI: https://doi.org/10.1016/j.bjorl.2020.11.004

(321) Sasu R. Infra-low frequency neurofeedback in persistent postural-perceptual dizziness-Case report. Front Hum Neurosci. 2022;16:959579. https://doi.org/10.3389/fnhum.2022.959579 DOI: https://doi.org/10.3389/fnhum.2022.959579

(322) Dlugaiczyk J, Gensberger KD, Straka H. Galvanic vestibular stimulation: from basic concepts to clinical applications. J Neurophysiol. 2019;121(6):2237-55. https://doi.org/10.1152/jn.00035.2019 DOI: https://doi.org/10.1152/jn.00035.2019

(323) Nam GS, Nguyen TT, Kang JJ, Han GC, Oh SY. Effects of Galvanic Vestibular Stimulation on Vestibular Compensation in Unilaterally Labyrinthectomized Mice. Front Neurol. 2021;12:736849. https://doi.org/10.3389/fneur.2021.736849 DOI: https://doi.org/10.3389/fneur.2021.736849

(324) Fujimoto C, Egami N, Kawahara T, Uemura Y, Yamamoto Y, Yamasoba T, et al. Noisy Galvanic Vestibular Stimulation Sustainably Improves Posture in Bilateral Vestibulopathy. Front Neurol. 2018;9:900. https://doi.org/10.3389/fneur.2018.00900 DOI: https://doi.org/10.3389/fneur.2018.00900

(325) Della-Justina HM, Gamba HR, Lukasova K, Nucci-da-Silva MP, Winkler AM, Amaro Jr E. Interaction of brain areas of visual and vestibular simultaneous activity with fMRI. Exp Brain Res. 2015;233(1):237-52. https://doi.org/10.1007/s00221-014-4107-6 DOI: https://doi.org/10.1007/s00221-014-4107-6

(326) Samoudi G, Nissbrandt H, Dutia MB, Bergquist F. Noisy galvanic vestibular stimulation promotes GABA release in the substantia nigra and improves locomotion in hemiparkinsonian rats. PLoS One. 2012;7(1):e29308. https://doi.org/10.1371/journal.pone.0029308 DOI: https://doi.org/10.1371/journal.pone.0029308

(327) Cogiamanian F, Vergari M, Pulecchi F, Marceglia S, Priori A. Effect of spinal transcutaneous direct current stimulation on somatosensory evoked potentials in humans. Clin Neurophysiol. 2008;119(11):2636-40. https://doi.org/10.1016/j.clinph.2008.07.249 DOI: https://doi.org/10.1016/j.clinph.2008.07.249

(328) Fernandes SR, Salvador R, Carvalho M, Miranda PC. Modelling Studies of Non-invasive Electric and Magnetic Stimulation of the Spinal Cord. In: Makarov SN, Noetscher GM, Nummenmaa A (eds). Brain and Human Body Modeling 2020: Computational Human Models Presented at EMBC 2019 and the BRAIN Initiative® 2019 Meeting. Springer; 2020. p. 139-65. https://doi.org/10.1007/978-3-030-45623-8_8 DOI: https://doi.org/10.1007/978-3-030-45623-8_8

(329) Formento E, Minassian K, Wagner F, Mignardot JB, Le Goff-Mignardot CG, Rowald A, et al. Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nat Neurosci. 2018;21(12):1728-41. https://doi.org/10.1038/s41593-018-0262-6 DOI: https://doi.org/10.1038/s41593-018-0262-6

(330) Winkler T, Hering P, Straube A. Spinal DC stimulation in humans modulates post-activation depression of the H-reflex depending on current polarity. Clin Neurophysiol. 2010;121(6):957-61. https://doi.org/10.1016/j.clinph.2010.01.014 DOI: https://doi.org/10.1016/j.clinph.2010.01.014

(331) Bocci T, Vannini B, Torzini A, Mazzatenta A, Vergari M, Cogiamanian F, et al. Cathodal transcutaneous spinal direct current stimulation (tsDCS) improves motor unit recruitment in healthy subjects. Neurosci Lett. 2014;578:75-9. https://doi.org/10.1016/j.neulet.2014.06.037 DOI: https://doi.org/10.1016/j.neulet.2014.06.037

(332) Albuquerque PL, Campêlo M, Mendonça T, Fontes LAM, Brito RM, Monte-Silva K. Effects of repetitive transcranial magnetic stimulation and trans-spinal direct current stimulation associated with treadmill exercise in spinal cord and cortical excitability of healthy subjects: A triple-blind, randomized and sham-controlled study. PLoS One. 2018;13(3):e0195276. https://doi.org/10.1371/journal.pone.0195276 DOI: https://doi.org/10.1371/journal.pone.0195276

(333) Lamy JC, Varriale P, Apartis E, Mehdi S, Blancher-Meinadier A, Kosutzka Z, et al. Trans-Spinal Direct Current Stimulation for Managing Primary Orthostatic Tremor. Mov Disord. 2021;36(8):1835-42. https://doi.org/10.1002/mds.28581 DOI: https://doi.org/10.1002/mds.28581

(334) Picelli A, Chemello E, Castellazzi P, Roncari L, Waldner A, Saltuari L, et al. Combined effects of transcranial direct current stimulation (tDCS) and transcutaneous spinal direct current stimulation (tsDCS) on robot-assisted gait training in patients with chronic stroke: A pilot, double blind, randomized controlled trial. Restor Neurol Neurosci. 2015;33(3):357-68. https://doi.org/10.3233/rnn-140474 DOI: https://doi.org/10.3233/RNN-140474

(335) Hawkins KA, DeMark LA, Vistamehr A, Snyder HJ, Conroy C, Wauneka C, et al. Feasibility of transcutaneous spinal direct current stimulation combined with locomotor training after spinal cord injury. Spinal Cord. 2022;60(11):971-7. https://doi.org/10.1038/s41393-022-00801-1 DOI: https://doi.org/10.1038/s41393-022-00801-1

(336) Guidetti M, Ferrucci R, Vergani M, Aglieco G, Naci A, Versace S, et al. Effects of Transcutaneous Spinal Direct Current Stimulation (tsDCS) in Patients With Chronic Pain: A Clinical and Neurophysiological Study. Front Neurol. 2021;12:695910. https://doi.org/10.3389/fneur.2021.695910 DOI: https://doi.org/10.3389/fneur.2021.695910

(337) Gu L, Xu H, Qian F. Effects of Non-Invasive Brain Stimulation on Alzheimer's Disease. J Prev Alzheimers Dis. 2022;9(3):410-24. https://doi.org/10.14283/jpad.2022.40 DOI: https://doi.org/10.14283/jpad.2022.40

(338) Kasten FH, Dowsett J, Herrmann CS. Sustained Aftereffect of α-tACS Lasts Up to 70 min after Stimulation. Front Hum Neurosci. 2016;10:245. https://doi.org/10.3389/fnhum.2016.00245 DOI: https://doi.org/10.3389/fnhum.2016.00245

(339) Boggio PS, Ferrucci R, Rigonatti SP, Covre P, Nitsche M, Pascual-Leone A, et al. Effects of transcranial direct current stimulation on working memory in patients with Parkinson's disease. J Neurol Sci. 2006;249(1):31-8. https://doi.org/10.1016/j.jns.2006.05.062 DOI: https://doi.org/10.1016/j.jns.2006.05.062

(340) Rabey JM, Dobronevsky E, Aichenbaum S, Gonen O, Marton RG, Khaigrekht M. Repetitive transcranial magnetic stimulation combined with cognitive training is a safe and effective modality for the treatment of Alzheimer's disease: a randomized, double-blind study. J Neural Transm. 2013;120(5):813-9. https://doi.org/10.1007/s00702-012-0902-z DOI: https://doi.org/10.1007/s00702-012-0902-z

(341) Tseng PT, Chen YW, Zeng BY, Zeng BS, Hung CM, Sun CK, et al. The beneficial effect on cognition of noninvasive brain stimulation intervention in patients with dementia: a network meta-analysis of randomized controlled trials. Alzheimers Res Ther. 2023;15(1):20. https://doi.org/10.1186%2Fs13195-023-01164-2 DOI: https://doi.org/10.1186/s13195-023-01164-2

(342) Morris-Rosendahl DJ, Crocq MA. Neurodevelopmental disorders-the history and future of a diagnostic concept . Dialogues Clin Neurosci. 2020;22(1):65-72. https://doi.org/10.31887/dcns.2020.22.1/macrocq DOI: https://doi.org/10.31887/DCNS.2020.22.1/macrocq

(343) Santos FH, Mosbacher JA, Menghini D, Rubia K, Grabner RH, Cohen Kadosh R. Effects of transcranial stimulation in developmental neurocognitive disorders: A critical appraisal. Prog Brain Res. 2021;264:1-40. https://doi.org/10.1016/bs.pbr.2021.01.012 DOI: https://doi.org/10.1016/bs.pbr.2021.01.012

(344) Hameed MQ, Dhamne SC, Gersner R, Kaye HL, Oberman LM, Pascual-Leone A, et al. Transcranial Magnetic and Direct Current Stimulation in Children. Curr Neurol Neurosci Rep. 2017;17(2):11. https://doi.org/10.1007/s11910-017-0719-0 DOI: https://doi.org/10.1007/s11910-017-0719-0

(345) Rajapakse T, Kirton A. Non-Invasive Brain Stimulation in Children: Applications and Future Directions. Transl Neurosci. 2013;4(2):217-33. https://doi.org/10.2478/s13380-013-0116-3 DOI: https://doi.org/10.2478/s13380-013-0116-3

(346) Palm U, Segmiller FM, Epple AN, Freisleder FJ, Koutsouleris N, Schulte-Körne G, et al. Transcranial direct current stimulation in children and adolescents: a comprehensive review. J Neural Transm. 2016;123(10):1219-34. https://doi.org/10.1007/s00702-016-1572-z DOI: https://doi.org/10.1007/s00702-016-1572-z

(347) Bikson M, Grossman P, Thomas C, Zannou AL, Jiang J, Adnan T, et al. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimul. 2016;9(5):641-61. https://doi.org/10.1016/j.brs.2016.06.004 DOI: https://doi.org/10.1016/j.brs.2016.06.004

(348) García-González S, Lugo-Marín J, Setien-Ramos I, Gisbert-Gustemps L, Arteaga-Henríquez G, Díez-Villoria E, et al. Transcranial direct current stimulation in Autism Spectrum Disorder: A systematic review and meta-analysis. Eur Neuropsychopharmacol. 2021;48:89-109. https://doi.org/10.1016/j.euroneuro.2021.02.017 DOI: https://doi.org/10.1016/j.euroneuro.2021.02.017

(349) Westwood SJ, Radua J, Rubia K. Noninvasive brain stimulation in children and adults with attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. J Psychiatry Neurosci. 2021;46(1):E14-E33. https://doi.org/10.1503/jpn.190179 DOI: https://doi.org/10.1503/jpn.190179

(350) Boggio PS, Asthana MK, Costa TL, Valasek CA, Osório AA. Promoting social plasticity in developmental disorders with non-invasive brain stimulation techniques. Front Neurosci. 2015;9:294. https://doi.org/10.3389/fnins.2015.00294 DOI: https://doi.org/10.3389/fnins.2015.00294

(351) Finisguerra A, Borgatti R, Urgesi C. Non-invasive Brain Stimulation for the Rehabilitation of Children and Adolescents With Neurodevelopmental Disorders: A Systematic Review. Front Psychol. 2019;10:135. https://doi.org/10.3389/fpsyg.2019.00135 DOI: https://doi.org/10.3389/fpsyg.2019.00135

(352) Lorenzon N, Musoles-Lleó J, Turrisi F, Gomis-González M, De La Torre R, Dierssen M. State-of-the-art therapy for Down syndrome. Dev Med Child Neurol. 2023;65(7):870-84. https://doi.org/10.1111/dmcn.15517 DOI: https://doi.org/10.1111/dmcn.15517

(353) Pretzsch CM, Ecker C. The neuroanatomy of autism. In: Kana RK (ed). The Neuroscience of Autism. Academic Press; 2022. p. 87-105. https://doi.org/10.1016/B978-0-12-816393-1.00013-0 DOI: https://doi.org/10.1016/B978-0-12-816393-1.00013-0

(354) Torre-Ubieta L, Won H, Stein JL, Geschwind DH. Advancing the understanding of autism disease mechanisms through genetics. Nat Med. 2016;22(4):345-61. https://doi.org/10.1038/nm.4071 DOI: https://doi.org/10.1038/nm.4071

(355) Hernandez LM, Rudie JD, Green SA, Bookheimer S, Dapretto M. Neural signatures of autism spectrum disorders: insights into brain network dynamics. Neuropsychopharmacology. 2015;40(1):171-89. https://doi.org/10.1038/npp.2014.172 DOI: https://doi.org/10.1038/npp.2014.172

(356) Khaleghi A, Zarafshan H, Vand SR, Mohammadi MR. Effects of Non-invasive Neurostimulation on Autism Spectrum Disorder: A Systematic Review. Clin Psychopharmacol Neurosci. 2020;18(4):527-52. https://doi.org/10.9758/cpn.2020.18.4.527 DOI: https://doi.org/10.9758/cpn.2020.18.4.527

(357) Zhang J, Zhang H. Effects of non-invasive neurostimulation on autism spectrum disorder: A systematic review. Front Psychiatry. 2022;13:989905. https://doi.org/10.3389/fpsyt.2022.989905 DOI: https://doi.org/10.3389/fpsyt.2022.989905

(358) Salehinejad MA, Ghanavati E, Glinski B, Hallajian AH, Azarkolah A. A systematic review of randomized controlled trials on efficacy and safety of transcranial direct current stimulation in major neurodevelopmental disorders: ADHD, autism, and dyslexia. Brain Behav. 2022;12(9):e2724. https://doi.org/10.1002/brb3.2724 DOI: https://doi.org/10.1002/brb3.2724

(359) Barahona-Corrêa JB, Velosa A, Chainho A, Lopes R, Oliveira-Maia AJ. Repetitive Transcranial Magnetic Stimulation for Treatment of Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Front Integr Neurosci. 2018;12:27. https://doi.org/10.3389/fnint.2018.00027 DOI: https://doi.org/10.3389/fnint.2018.00027

(360) Rubia K. Functional brain imaging across development. Eur Child Adolesc Psychiatry. 2013;22(12):719-31. https://doi.org/10.1007/s00787-012-0291-8 DOI: https://doi.org/10.1007/s00787-012-0291-8

(361) Cortese S, Adamo N, Del Giovane C, Mohr-Jensen C, Hayes AJ, Carucci S, et al. Comparative efficacy and tolerability of medications for attention-deficit hyperactivity disorder in children, adolescents, and adults: a systematic review and network meta-analysis. Lancet Psychiatry. 2018;5(9):727-38. https://doi.org/10.1016/s2215-0366(18)30269-4 DOI: https://doi.org/10.1016/S2215-0366(18)30269-4

(362) Cortese S. Debate: Are Stimulant Medications for Attention-Deficit/Hyperactivity Disorder Effective in the Long Term?. J Am Acad Child Adolesc Psychiatry. 2019;58(10):936. https://doi.org/10.1016/j.jaac.2019.04.029 DOI: https://doi.org/10.1016/j.jaac.2019.04.029

(363) Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: State of the art 2008. Brain Stimul. 2008;1(3):206-23. https://doi.org/10.1016/j.brs.2008.06.004 DOI: https://doi.org/10.1016/j.brs.2008.06.004

(364) Kim S, Stephenson MC, Morris PG, Jackson SR. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study. Neuroimage. 2014;99:237-43. https://doi.org/10.1016/j.neuroimage.2014.05.070 DOI: https://doi.org/10.1016/j.neuroimage.2014.05.070

(365) Gómez L, Vidal B, Morales L, Báez M, Maragoto C, Galvizu R, et al. Low frequency repetitive transcranial magnetic stimulation in children with attention deficit/hyperactivity disorder. Preliminary results. Brain Stimul. 2014;7(5):760-2. https://doi.org/10.1016/j.brs.2014.06.001 DOI: https://doi.org/10.1016/j.brs.2014.06.001

(366) Ashkan K, Shotbolt P, David AS, Samuel M. Deep brain stimulation: a return journey from psychiatry to neurology. Postgrad Med J. 2013;89(1052):323-8. https://doi.org/10.1136/postgradmedj-2012-131520 DOI: https://doi.org/10.1136/postgradmedj-2012-131520

(367) Krishnan C, Santos L, Peterson MD, Ehinger M. Safety of noninvasive brain stimulation in children and adolescents. Brain Stimul. 2015;8(1):76-87. https://doi.org/10.1016/j.brs.2014.10.012 DOI: https://doi.org/10.1016/j.brs.2014.10.012

(368) Zewdie E, Ciechanski P, Kuo HC, Giuffre A, Kahl C, King R, et al. Safety and tolerability of transcranial magnetic and direct current stimulation in children: Prospective single center evidence from 3.5 million stimulations. Brain Stimul. 2020;13(3):565-75. https://doi.org/10.1016/j.brs.2019.12.025 DOI: https://doi.org/10.1016/j.brs.2019.12.025

(369) Kuo MF, Nitsche MA. Effects of transcranial electrical stimulation on cognition. Clin EEG Neurosci. 2012;43(3):192-9. https://doi.org/10.1177/1550059412444975 DOI: https://doi.org/10.1177/1550059412444975

(370) Roberts BA, Martel MM, Nigg JT. Are There Executive Dysfunction Subtypes Within ADHD? J Atten Disord. 2017;21(4):284-93. https://doi.org/10.1177/1087054713510349 DOI: https://doi.org/10.1177/1087054713510349

(371) International Association for the Study of Pain (IASP). Terminology [Internet]. Available from: https://www.iasp-pain.org/resources/terminology/

(372) Finnerup NB, Kuner R, Jensen TS. Neuropathic Pain: From Mechanisms to Treatment. Physiol Rev. 2021;101(1):259-301. https://doi.org/10.1152/physrev.00045.2019 DOI: https://doi.org/10.1152/physrev.00045.2019

(373) Hecke O, Austin SK, Khan RA, Smith BH, Torrance N. Neuropathic pain in the general population: a systematic review of epidemiological studies. Pain. 2014;155(4):654-62. https://doi.org/10.1016/j.pain.2013.11.013 DOI: https://doi.org/10.1016/j.pain.2013.11.013

(374) Scholz J, Finnerup NB, Attal N, Aziz Q, Baron R, Bennett MI, et al. The IASP classification of chronic pain for ICD-11: chronic neuropathic pain. Pain. 2019;160(1):53-59. https://doi.org/10.1097/j.pain.0000000000001365 DOI: https://doi.org/10.1097/j.pain.0000000000001365

(375) Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009;10(9):895-926. https://doi.org/10.1016/j.jpain.2009.06.012 DOI: https://doi.org/10.1016/j.jpain.2009.06.012

(376) Zhao J, Seereeram A, Nassar MA, Levato A, Pezet S, Hathaway G, et al. Nociceptor-derived brain-derived neurotrophic factor regulates acute and inflammatory but not neuropathic pain. Mol Cell Neurosci. 2006;31(3):539-48. https://doi.org/10.1016/j.mcn.2005.11.008 DOI: https://doi.org/10.1016/j.mcn.2005.11.008

(377) Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci. 2009;32:1-32. https://doi.org/10.1146/annurev.neuro.051508.135531 DOI: https://doi.org/10.1146/annurev.neuro.051508.135531

(378) Di Pietro F, Macey PM, Rae CD, Alshelh Z, Macefield VG, Vickers ER, et al. The relationship between thalamic GABA content and resting cortical rhythm in neuropathic pain. Hum Brain Mapp. 2018;39(5):1945-56. https://doi.org/10.1002%2Fhbm.23973 DOI: https://doi.org/10.1002/hbm.23973

(379) Moisset X, Bouhassira D, Attal N. French guidelines for neuropathic pain: An update and commentary. Rev Neurol. 2021;177(7):834-7. https://doi.org/10.1016/j.neurol.2021.07.004 DOI: https://doi.org/10.1016/j.neurol.2021.07.004

(380) Baptista AF, Fernandes AMBL, Sá KN, Okano AH, Brunoni AR, Lara-Solares A, et al. Latin American and Caribbean consensus on noninvasive central nervous system neuromodulation for chronic pain management (LAC2-NIN-CP). Pain Rep. 2019;4(1):e692. https://doi.org/10.1097%2FPR9.0000000000000692 DOI: https://doi.org/10.1097/PR9.0000000000000692

(381) Jiang X, Yan W, Wan R, Lin Y, Zhu X, Song G, et al. Effects of repetitive transcranial magnetic stimulation on neuropathic pain: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2022;132:130-41. https://doi.org/10.1016/j.neubiorev.2021.11.037 DOI: https://doi.org/10.1016/j.neubiorev.2021.11.037

(382) Gatzinsky K, Bergh C, Liljegren A, Silander H, Samuelsson J, Svanberg T, et al. Repetitive transcranial magnetic stimulation of the primary motor cortex in management of chronic neuropathic pain: a systematic review. Scand J Pain. 2020;21(1):8-21. https://doi.org/10.1515/sjpain-2020-0054 DOI: https://doi.org/10.1515/sjpain-2020-0054

(383) Treede RD, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, et al. Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology. 2008;70(18):1630-5. https://doi.org/10.1212/01.wnl.0000282763.29778.59 DOI: https://doi.org/10.1212/01.wnl.0000282763.29778.59

(384) Attal N, Cruccu G, Haanpää M, Hansson P, Jensen TS, Nurmikko T, et al. EFNS guidelines on pharmacological treatment of neuropathic pain. Eur J Neurol. 2006;13(11):1153-69. https://doi.org/10.1111/j.1468-1331.2006.01511.x DOI: https://doi.org/10.1111/j.1468-1331.2006.01511.x

(385) Lefaucheur JP, Drouot X, Keravel Y, Nguyen JP. Pain relief induced by repetitive transcranial magnetic stimulation of precentral cortex. Neuroreport. 2001;12(13):2963-5. https://doi.org/10.1097/00001756-200109170-00041 DOI: https://doi.org/10.1097/00001756-200109170-00041

(386) André-Obadia N, Peyron R, Mertens P, Mauguière F, Laurent B, Garcia-Larrea L. Transcranial magnetic stimulation for pain control. Double-blind study of different frequencies against placebo, and correlation with motor cortex stimulation efficacy. Clin Neurophysiol. 2006;117(7):1536-44. https://doi.org/10.1016/j.clinph.2006.03.025 DOI: https://doi.org/10.1016/j.clinph.2006.03.025

(387) Hosomi K, Shimokawa T, Ikoma K, Nakamura Y, Sugiyama K, Ugawa Y, et al. Daily repetitive transcranial magnetic stimulation of primary motor cortex for neuropathic pain: a randomized, multicenter, double-blind, crossover, sham-controlled trial. Pain. 2013;154(7):1065-72. https://doi.org/10.1016/j.pain.2013.03.016 DOI: https://doi.org/10.1016/j.pain.2013.03.016

(388) Quesada C, Pommier B, Fauchon C, Bradley C, Créac'h C, Murat M, et al. New procedure of high-frequency repetitive transcranial magnetic stimulation for central neuropathic pain: a placebo-controlled randomized crossover study. Pain. 2020;161(4):718-28. https://doi.org/10.1097/j.pain.0000000000001760 DOI: https://doi.org/10.1097/j.pain.0000000000001760

(389) Galhardoni R, Correia GS, Araujo H, Yeng LT, Fernandes DT, Kaziyama HH, et al. Repetitive transcranial magnetic stimulation in chronic pain: a review of the literature. Arch Phys Med Rehabil. 2015;96(suppl 4):S156-72. https://doi.org/10.1016/j.apmr.2014.11.010 DOI: https://doi.org/10.1016/j.apmr.2014.11.010

(390) Moisset X, Bouhassira D, Avez Couturier J, Alchaar H, Conradi S, Delmotte MH, et al. Pharmacological and non-pharmacological treatments for neuropathic pain: Systematic review and French recommendations. Rev Neurol. 2020;176(5):325-52. https://doi.org/10.1016/j.neurol.2020.01.361 DOI: https://doi.org/10.1016/j.neurol.2020.01.361

(391) Clauw DJ. Fibromyalgia: a clinical review. JAMA. 2014;311(15):1547-55. https://doi.org/10.1001/jama.2014.3266 DOI: https://doi.org/10.1001/jama.2014.3266

(392) Sarzi-Puttini P, Giorgi V, Marotto D, Atzeni F. Fibromyalgia: an update on clinical characteristics, aetiopathogenesis and treatment. Nat Rev Rheumatol. 2020;16(11):645-60. https://doi.org/10.1038/s41584-020-00506-w DOI: https://doi.org/10.1038/s41584-020-00506-w

(393) Kosek E, Cohen M, Baron R, Gebhart GF, Mico JA, Rice ASC, et al. Do we need a third mechanistic descriptor for chronic pain states?. Pain. 2016;157(7):1382-6. https://doi.org/10.1097/j.pain.0000000000000507 DOI: https://doi.org/10.1097/j.pain.0000000000000507

(394) Cifre I, Sitges C, Fraiman D, Muñoz MÁ, Balenzuela P, González-Roldán A, et al. Disrupted functional connectivity of the pain network in fibromyalgia. Psychosom Med. 2012;74(1):55-62. https://doi.org/10.1097/psy.0b013e3182408f04 DOI: https://doi.org/10.1097/PSY.0b013e3182408f04

(395) Dehghan M, Schmidt-Wilcke T, Pfleiderer B, Eickhoff SB, Petzke F, Harris RE, et al. Coordinate-based (ALE) meta-analysis of brain activation in patients with fibromyalgia. Hum Brain Mapp. 2016;37(5):1749-58. https://doi.org/10.1002/hbm.23132 DOI: https://doi.org/10.1002/hbm.23132

(396) Gracely RH, Petzke F, Wolf JM, Clauw DJ. Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum. 2002;46(5):1333-43. https://doi.org/10.1002/art.10225 DOI: https://doi.org/10.1002/art.10225

(397) Napadow V, Kim J, Clauw DJ, Harris RE. Decreased intrinsic brain connectivity is associated with reduced clinical pain in fibromyalgia. Arthritis Rheum. 2012;64(7):2398-403. https://doi.org/10.1002/art.34412 DOI: https://doi.org/10.1002/art.34412

(398) Jensen KB, Loitoile R, Kosek E, Petzke F, Carville S, Fransson P, et al. Patients with fibromyalgia display less functional connectivity in the brain’s pain inhibitory network. Mol Pain. 2012;8:32. https://doi.org/10.1186/1744-8069-8-32 DOI: https://doi.org/10.1186/1744-8069-8-32

(399) González-Roldán AM, Bomba IC, Diesch E, Montoya P, Flor H, Kamping S. Controllability and hippocampal activation during pain expectation in fibromyalgia syndrome. Biol Psychol. 2016;121(Pt A):39-48. https://doi.org/10.1016/j.biopsycho.2016.09.007 DOI: https://doi.org/10.1016/j.biopsycho.2016.09.007

(400) Fischer-Jbali LR, Montoro CI, Montoya P, Halder W, Duschek S. Central nervous activity during a dot probe task with facial expressions in fibromyalgia. Biol Psychol. 2022;172:108361. https://doi.org/10.1016/j.biopsycho.2022.108361 DOI: https://doi.org/10.1016/j.biopsycho.2022.108361

(401) Harris RE, Clauw DJ, Scott DJ, McLean SA, Gracely RH, Zubieta JK. Decreased central mu-opioid receptor availability in fibromyalgia. J Neurosci. 2007;27(37):10000-6. https://doi.org/10.1523/jneurosci.2849-07.2007 DOI: https://doi.org/10.1523/JNEUROSCI.2849-07.2007

(402) Macfarlane GJ, Kronisch C, Dean LE, Atzeni F, Häuser W, Fluß E, et al. EULAR revised recommendations for the management of fibromyalgia. Ann Rheum Dis. 2017;76(2):318-28. https://doi.org/10.1136/annrheumdis-2016-209724 DOI: https://doi.org/10.1136/annrheumdis-2016-209724

(403) Ambriz-Tututi M, Alvarado-Reynoso B, Drucker-Colín R. Analgesic effect of repetitive transcranial magnetic stimulation (rTMS) in patients with chronic low back pain. Bioelectromagnetics. 2016;37(8):527-35. https://doi.org/10.1002/bem.22001 DOI: https://doi.org/10.1002/bem.22001

(404) García-Larrea L, Peyron R, Mertens P, Gregoire MC, Lavenne F, Le Bars D, et al. Electrical stimulation of motor cortex for pain control: a combined PET-scan and electrophysiological study. Pain. 1999;83(2):259-73. https://doi.org/10.1016/s0304-3959(99)00114-1 DOI: https://doi.org/10.1016/S0304-3959(99)00114-1

(405) Maarrawi J, Peyron R, Mertens P, Costes N, Magnin M, Sindou M, et al. Motor cortex stimulation for pain control induces changes in the endogenous opioid system. Neurology. 2007;69(9):827-34. https://doi.org/10.1212/01.wnl.0000269783.86997.37 DOI: https://doi.org/10.1212/01.wnl.0000269783.86997.37

(406) Patricio P, Roy JS, Rohel A, Gariépy C, Émond C, Hamel É, et al. The Effect of Noninvasive Brain Stimulation to Reduce Nonspecific Low Back Pain: A Systematic Review and Meta-analysis. Clin J Pain. 2021;37(6):475-85. https://doi.org/10.1097/ajp.0000000000000934 DOI: https://doi.org/10.1097/AJP.0000000000000934

(407) Jafarzadeh A, Ehsani F, Yosephi MH, Zoghi M, Jaberzadeh S. Concurrent postural training and M1 anodal transcranial direct current stimulation improve postural impairment in patients with chronic low back pain. J Clin Neurosci. 2019;68:224-234. https://doi.org/10.1016/j.jocn.2019.07.017 DOI: https://doi.org/10.1016/j.jocn.2019.07.017

(408) Hazime FA, Baptista AF, Freitas DG, Monteiro RL, Maretto RL, Hasue RH, et al. Treating low back pain with combined cerebral and peripheral electrical stimulation: A randomized, double-blind, factorial clinical trial. Eur J Pain. 2017;21(7):1132-43. https://doi.org/10.1002/ejp.1037 DOI: https://doi.org/10.1002/ejp.1037

(409) Baden M, Lu L, Drummond FJ, Gavin A, Sharp L. Pain, fatigue and depression symptom cluster in survivors of prostate cancer. Support Care Cancer. 2020;28(10):4813-24. https://doi.org/10.1007/s00520-019-05268-0 DOI: https://doi.org/10.1007/s00520-019-05268-0

(410) Ma Y, He B, Jiang M, Yang Y, Wang C, Huang C, et al. Prevalence and risk factors of cancer-related fatigue: A systematic review and meta-analysis. Int J Nurs Stud. 2020;111:103707. https://doi.org/10.1016/j.ijnurstu.2020.103707 DOI: https://doi.org/10.1016/j.ijnurstu.2020.103707

(411) Davis MP. Cancer-Related Neuropathic Pain: Review and Selective Topics. Hematol Oncol Clin North Am. 2018;32(3):417-31. https://doi.org/10.1016/j.hoc.2018.01.005 DOI: https://doi.org/10.1016/j.hoc.2018.01.005

(412) Chwistek M. Recent advances in understanding and managing cancer pain. F1000Res. 2017;6:945. https://doi.org/10.12688/f1000research.10817.1 DOI: https://doi.org/10.12688/f1000research.10817.1

(413) Moreira A, Machado DGDS, Moscaleski L, Bikson M, Unal G, Bradley PS, et al. Effect of tDCS on well-being and autonomic function in professional male players after official soccer matches. Physiol Behav. 2021;233:113351. https://doi.org/10.1016/j.physbeh.2021.113351 DOI: https://doi.org/10.1016/j.physbeh.2021.113351

(414) Brownstein CG, Dent JP, Parker P, Hicks KM, Howatson G, Goodall S, et al. Etiology and Recovery of Neuromuscular Fatigue following Competitive Soccer Match-Play. Front Physiol. 2017;8:831. https://doi.org/10.3389/fphys.2017.00831 DOI: https://doi.org/10.3389/fphys.2017.00831

(415) Rattray B, Argus C, Martin K, Northey J, Driller M. Is it time to turn our attention toward central mechanisms for post-exertional recovery strategies and performance?. Front Physiol. 2015;6:79. https://doi.org/10.3389/fphys.2015.00079 DOI: https://doi.org/10.3389/fphys.2015.00079

(416) McIntire LK, McKinley RA, Nelson JM, Goodyear C. Transcranial direct current stimulation versus caffeine as a fatigue countermeasure. Brain Stimul. 2017;10(6):1070-8. https://doi.org/10.1016/j.brs.2017.08.005 DOI: https://doi.org/10.1016/j.brs.2017.08.005

(417) Mehrsafar AH, Rosa MAS, Zadeh AM, Gazerani P. A feasibility study of application and potential effects of a single session transcranial direct current stimulation (tDCS) on competitive anxiety, mood state, salivary levels of cortisol and alpha amylase in elite athletes under a real-world competition. Physiol Behav. 2020;227:113173. https://doi.org/10.1016/j.physbeh.2020.113173 DOI: https://doi.org/10.1016/j.physbeh.2020.113173

(418) Osiurak F, Navarro J, Reynaud E. How Our Cognition Shapes and Is Shaped by Technology: A Common Framework for Understanding Human Tool-Use Interactions in the Past, Present, and Future. Front Psychol. 2018;9:293. https://doi.org/10.3389/fpsyg.2018.00293 DOI: https://doi.org/10.3389/fpsyg.2018.00293

(419) Parasuraman R, McKinley RA. Using noninvasive brain stimulation to accelerate learning and enhance human performance. Hum Factors. 2014;56(5):816-24. https://doi.org/10.1177/0018720814538815 DOI: https://doi.org/10.1177/0018720814538815

(420) Brioschi Guevara A, Bieler M, Altomare D, Berthier M, Csajka C, Dautricourt S, et al. Protocols for cognitive enhancement. A user manual for Brain Health Services-part 5 of 6. Alzheimers Res Ther. 2021;13(1):172. https://doi.org/10.1186/s13195-021-00844-1 DOI: https://doi.org/10.1186/s13195-021-00844-1

(421) Salehpour F, Majdi A, Pazhuhi M, Ghasemi F, Khademi M, Pashazadeh F, et al. Transcranial Photobiomodulation Improves Cognitive Performance in Young Healthy Adults: A Systematic Review and Meta-Analysis. Photobiomodul Photomed Laser Surg. 2019;37(10):635-43. https://doi.org/10.1089/photob.2019.4673 DOI: https://doi.org/10.1089/photob.2019.4673

(422) Lavazza A. Transcranial electrical stimulation for human enhancement and the risk of inequality: Prohibition or compensation?. Bioethics. 2019;33(1):122-31. https://doi.org/10.1111/bioe.12504 DOI: https://doi.org/10.1111/bioe.12504

(423) Antal A, Luber B, Brem AK, Bikson M, Brunoni AR, Cohen Kadosh R, et al. Non-invasive brain stimulation and neuroenhancement. Clin Neurophysiol Pract. 2022;7:146-65. https://doi.org/10.1016/j.cnp.2022.05.002 DOI: https://doi.org/10.1016/j.cnp.2022.05.002

Downloads

Published

10/15/2024

Issue

Section

Reviews

How to Cite

1.
Baptista AF, Casali AG, Oda AL, Okano AH, Moreira A, Santos ALY da S, et al. [Erratum] Brain Imaging and neurostimulation in health and disorders: status report. Brain Imaging and Stimul. [Internet]. 2024 Oct. 15 [cited 2024 Oct. 31];3:e5952. Available from: https://journals.bahiana.edu.br/index.php/brain/article/view/5952

Most read articles by the same author(s)

<< < 1 2