Protocol for evaluating the in vitro effect of violet light-emitting diodes (LEDs) 410 nm ± 10 nm on yeast cultures

Authors

DOI:

https://doi.org/10.17267/2675-021Xevidence.2022.e4736

Keywords:

Phototherapy, Antifungal agents, Candida, Malassezia

Abstract

BACKGROUND: Candida spp and Malassezia spp cause superficial infections that may be resistant to conventional treatments. Violet light-emitting diodes (LEDs) therapy is a therapeutic alternative. PURPOSE: To describe the protocol for evaluating the antifungal effect of violet LEDs 410 nm ± 10 nm on Candida spp and Malassezia spp in vitro. PROTOCOL: LEDs 410 nm ± 10 nm are applied to a fungal suspension at fluences of 61.13 J/cm2, 91.70 J/cm2, and 183.39 J/cm2. The isolates are cultured for 48 to 72 hours. Colony forming units (CFUs) are quantified by visual counting and percent culture plate occupancy by digital analysis. Morphology is assessed by light microscopy and Gram staining, and yeast metabolism/function by transmission electron microscopy, assessment of reactive oxygen species, and DNA fragmentation. DATA ANALYSIS: the percentage of LEDs inhibition is calculated considering the growth of the negative control condition and the percentage of plate occupancy by yeasts by dividing the number of pixels classified as colonies by the total number of pixels on the plate. The morphological and functional aspects are described for the intervention and negative control. The ANOVA test is used to compare the mean percentages of growth inhibition and plate occupancy between the three fluences of LEDs 410 nm ± 10 nm and the negative control. ESTIMATED RESULTS: We intend to determine the antifungal effect of the different fluences of LEDs 410 nm ± 10 nm on Candida spp and Malassezia spp. The evaluation of other fungal species by this protocol should be investigated.

Downloads

Download data is not yet available.

Author Biography

Marília Wellichan Mancini, Instituto de Pesquisas e Ensino na Área da Saúde - NUPEN. (São Carlos). São Paulo, Brasil.

Departamento de Biofotônica

References

(1) Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC. Hidden Killers: human fungal infections. Sci Transl Med. 2012;4(165):165rv13. https://doi.org/10.1126/scitranslmed.3004404

(2) Hay R. Superficial fungal infections. Med (United Kingdom). 2017;45(11):707-10. https://doi.org/10.1016/j.mpmed.2017.08.006

(3) Linhares IM, Amaral RLG, Robial R, Eleutério Junior J. Vaginites e vaginoses: Protocolos Febrasgo – Ginecologia, nº 24. [Internet]. São Paulo: Federação Brasileira das Associações de Ginecologia e Obstetrícia; 2018. Available from: https://www.febrasgo.org.br/images/pec/Protocolos-assistenciais/Protocolos-assistenciais-ginecologia.pdf/NOVO_Vaginites-e-Vaginoses.pdf

(4) Vicente MF, Basilio A, Cabello A, Peláez F. Microbial natural products as a source of antifungals. Clin Microbiol Infect. 2003;9(1):15-32. https://doi.org/10.1046/j.1469-0691.2003.00489.x

(5) Oliveira PM, Mascarenhas RE, Lacroix C, Ferrer SR, Oliveira RPC, Cravo EA, et al. Candida species isolated from the vaginal mucosa of HIV-infected women in Salvador, Bahia, Brazil. Braz J Infect Dis. 2011;15(3):239-44. https://doi.org/10.1590/S1413-86702011000300010

(6) Boatto HF, Girão MJBC, Moraes MS, Francisco EC, Gompertz OF. The role of the symptomatic and asymptomatic sexual partners in the recurent vulvovaginitis. Rev Bras Ginecol e Obstet. 2015;37(7):314-8. https://doi.org/10.1590/S0100-720320150005098

(7) Maraschin MM, Spader T, Alves D, Mario N, Rossato L, Lopes PGM. Infections by malassezia?: new approachs. Saúde (Santa Maria). 2008;34(1 e 2):4-8. https://doi.org/10.5902/223658346488

(8) Lorch JM, Palmer JM, Vanderwolf KJ, Schmidt KZ, Verant ML, Weller TJ, et al. Malassezia vespertilionis sp. nov.: a new cold-tolerant species of yeast isolated from bats. Persoonia. 2018;41:56-70. https://doi.org/10.3767/persoonia.2018.41.04

(9) Grice EA, Dawson TL 23 Jr. Host-microbe interactions: Malassezia and human skin. Curr Opin Microbiol. 2017;40:81-87. https://doi.org/10.1016/j.mib.2017.10.024

(10) Prohic A, Sadikovic TJ, Krupalija-Fazlic M, Kuskunovic-Vlahovljak S. Malassezia species in healthy skin and in dermatological conditions. Int J Dermatol. 2016;55(5):494-504. https://doi.org/10.1111/ijd.13116

(11) Sampaio ALSB, Mameri ACA, Vargas TJS, Ramos-e-Silva M, Nunes AP, Carneiro SCS. Seborrheic dermatitis. Continuing Medical Education. An Bras Dermatol. 2011;86(6):1061–74. https://doi.org/10.1590/S0365-05962011000600002

(12) Martin F, Taylor GP. Prospects for the management of human T-cell lymphotropic virus type 1-associated myelopathy. AIDS Rev. 2011;13(3):161-70. Cited: PMID: 21799534.

(13) Schierhout G, McGregor S, Gessain A, Einsiedel L, Martinello M, Kaldor J. Association between HTLV-1 infection and adverse health outcomes: a systematic review and meta-analysis of epidemiological studies. Lancet Infect Dis. 2020;20(1):133-43. https://doi.org/10.1016/s1473-3099(19)30402-5

(14) Nishimoto AT, Sharma C, Rogers PD. Molecular and genetic basis of azole antifungal resistance in the opportunistic pathogenic fungus Candida albicans. J Antimicrob Chemother. 2020;75(2):257-270. https://doi.org/10.1093/jac/dkz400

(15) Rhimi W, Theelen B, Boekhout T, Aneke CI, Otranto D, Cafarchia C. Conventional therapy and new antifungal drugs against Malassezia infections. Med Mycol. 2021;59(3):215-234. https://doi.org/10.1093/mmy/myaa087

(16) Sparber F, Ruchti F, LeibundGut-Landmann S. Host Immunity to Malassezia in Health and Disease. Front Cell Infect Microbiol. 2020;10:198. https://doi.org/10.3389/fcimb.2020.00198

(17) Xuan M, Lu C, He Z. Clinical characteristics and quality of life in seborrheic dermatitis patients: a cross-sectional study in China. Health Qual Life Outcomes. 2020;18:308. https://doi.org/10.1186/s12955-020-01558-y

(18) Willems HME, Ahmed SS, Liu J, Xu Z, Peters BM. Vulvovaginal Candidiasis: A Current Understanding and Burning Questions. J Fungi (Basel). 2020;6(1):27. https://doi.org/10.3390/jof6010027

(19) Moorhead S, Maclean M, MacGregor SJ, Anderson JG. Comparative Sensitivity of Trichophyton and Aspergillus Conidia to Inactivation by Violet-Blue Light Exposure. Photomed Laser Surg. 2016;34(1):36-41. https://doi.org/10.1089/pho.2015.3922

(20) Demitto FO, Amaral RCR, Biasi RP, Guilhermetti E, Svidzinski TIE, Baeza LC. Antifungal susceptibility of Candida spp. in vitro among patients from Reginal University Hospital of Maringá-PR. J Bras Patol Med Lab. 2012;48(5):315-21. https://doi.org/10.1590/S1676-24442012000500003

(21) Wi HS, Na EY, Yun SJ, Lee JB. The antifungal effect of light emitting diode on Malassezia yeasts. J Dermatol Sci. 2012;67(1):3-8. https://doi.org/10.1016/j.jdermsci.2012.04.001

(22) Ash C, Dubec M, Donne K, Bashford T. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med Sci. 2017;32(8):1909–18. https://doi.org/10.1007/s10103-017-2317-4

(23) Carrillo-Muñoz AJ, Rojas F, Tur-Tur C, Sosa MA, Diez GO, Espada CM, et al. In vitro antifungal activity of topical and systemic antifungal drugs against Malassezia species. Mycoses. 2013;56(5):571-75. https://doi.org/10.1111/myc.12076

(24) Robatto M, Pavie MC, Tozetto S, Brito MB, Lordêlo P. Blue Ligth Emitting Diode in Treatment of Recurring Vulvovaginal Candidiasis: a Case Report. Brazilian J Med Hum Heal. 2017;5(4):162–8. https://doi.org/10.17267/2317-3386bjmhh.v5i4.1472

(25) Yarrow D. Methods for the Isolation, Maintenance and Identification of Yeast. In: Kurtzman CP, Fell JW, editors. The Yeasts - A Taxanomy Study. 4th ed. Amsterdam: Elsevier Publishers; 1998. p. 77-100. https://doi.org/10.1016/B978-044481312-1/50014-9

(26) Agência Nacional de Vigilância Sanitária (Brasil), Organização Pan-Americana da Saúde. Método de Referência para Testes de Diluição em Caldo para a Determinação da Sensibilidade de Leveduras à Terapia Antifúngica: norma aprovada [Internet]. 2nd. ed. Pennsylvania; 2002. Available from: https://pesquisa.bvsalud.org/portal/resource/pt/mis-16205

(27) Gonzalez RC, Woods RE. Digital image processing. 3rd. ed. New Jersey: Prentice Hall; 2008.

(28) Gomes-Junior RA, Silva RS, Lima RG, Vannier-Santos MA. Antifungal mechanism of [RuIII(NH3)4catechol]+ complex on fluconazole-resistant Candida tropicalis. FEMS Microbiol Lett. 2017;364(9). https://doi.org/10.1093/femsle/fnx073

Downloads

Published

2022-12-05

How to Cite

Ribeiro, R. T. S. K. ., Santos, Élissa da S. ., Mascarenhas, R. E. M., Mancini, M. W., Almeida-Lopes, L. ., Barros, T. F. ., Regis, C. G. ., Silva, J. de J. ., Moreira, D. R. de M. ., Dantas, D. O. ., Andrade, B. T. ., Gomes, J. M. de S., Dias, C. M. C. C. ., & Grassi, M. F. R. . (2022). Protocol for evaluating the in vitro effect of violet light-emitting diodes (LEDs) 410 nm ± 10 nm on yeast cultures . Journal of Evidence-Based Healthcare, 4, e4736. https://doi.org/10.17267/2675-021Xevidence.2022.e4736

Issue

Section

Registered Reports