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When math legitimizes knowledge: a step by step 
approach to Bayes’ rule in diagnostic reasoning

Concept article

ABSTRACT | INTRODUCTION: Many mistakes in clinical practice arise from confusing the probability of a positive test in 
those with the disease and the probability of having the disease in those who test positive. This misunderstanding leads to 
overestimating disease probability, diagnosing diseases in healthy individuals, ordering invasive diagnostic tests, and prescribing 
unnecessary treatments, resulting in unjustified adverse effect, psychological stress, and increased cost. Probabilistic reasoning 
is an essential skill to mitigate this confusion, and Bayes theorem is an important tool to accomplish this goal. OBJECTIVE: To 
present a step-by-step demonstration of Bayes' formula for positive and negative predictive values, fostering understanding 
and enabling its adoption in evidence-based medicine education and clinical practice as a supporting tool in the decision-
making process. METHODS: In this article, we explain the difference between deductive and inductive thinking and how 
diagnostic reasoning is predominantly inductive, where evidence (the test result) is used to predict the cause (the presence of 
disease), a path that involves reverse probability, for which our reasoning is hazier. Through a clinical example involving the 
diagnosis of systemic lupus erythematosus, we use the Bayesian framework as a tool to help understand the difference between 
sensitivity/specificity (forward probability; deductive) and positive/negative predictive values (reverse probability: inductive). 
CONCLUSIONS: Excellent doctors are masters at applying Bayesian reasoning without using any formulas: they understand that 
the most important component of the diagnostic process is the reasoning that originates it and the resulting clinical decision 
depends on interpreting results considering their interaction with the context, not in isolation. Bad clinical reasoning results in 
bad clinical decisions, despite how accurate the diagnostic test: garbage in, garbage out. We hope our step-by-step approach to 
Bayes' rule can help demystify this powerful statistical tool and strengthen the idea that the value of a diagnostic test is directly 
proportional to the quality of clinical reasoning that led to its request.
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1. Introduction

Many mistakes in clinical practice arise from confusing the probability of a positive test in those with the 
disease and the probability of having the disease in those who test positive. This misunderstanding leads to 
overestimating disease probability1, diagnosing diseases in healthy individuals2, ordering invasive diagnostic 
tests3,4 and prescribing unnecessary treatments, resulting in unjustified adverse effects5,6, psychological stress7 
and increasead costs.8 Probabilistic reasoning is an essential skill for doctors. To apply it, besides specific medical 
knowledge, an understanding of some basic mathematical and statistical concepts is required.9,10 One of these 
concepts is Bayes’ theorem, developed by the mathematician Pierre-Simon Laplace, based on Thomas Bayes’ 
work11, an 18th century English pastor. 

Bayesian reasoning can be summarized as: 

prior knowledge (or belief) + new evidence  updated knowledge (or belief). 

It provides an objective way to combine the result of a diagnostic test (new evidence) with initial clinical suspicion 
(prior knowledge), updating knowledge and decreasing diagnostic uncertainty. 

The theorem has been adapted for diagnostics, and is referred to as Bayes’ rule for positive and negative predictive 
values (PPV and NPV):12,13

The seemingly complex formula’s visual impression, coupled with the absence of an explanation of how it was 
derived, may lead to resistance to adopting it.14 Therefore, we present a step-by-step demonstration integrated 
with clinical reasoning, which can serve as a didactic tool for those who teach evidence-based medicine and those 
who want to apply it in clinical practice.

2. Probability theory

Probability theory provides formal and mathematical language to deal with events that involve uncertainty, such 
as diagnosis. What truly interests us is a dichotomous question: whether the individual has the disease being 
investigated or not. The problem arises when we also interpret test results as dichotomous: positive test = disease; 
negative test = absence of disease. Test results rarely settle the issue in such a definitive manner. What they do is 
reduce uncertainty, relying on probability. 

http://dx.doi.org/10.17267/2675-021Xevidence.2024.e5903
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But what does a 70% probability of having a disease mean? Or a 20% risk of death? Nobody is 70% sick or 20% 
dead. Probability continuously quantifies categorical events, which is why it is so difficult to understand. Probability 
doesn’t exist as a tangible entity; it is an abstraction. 

3. Diagnostic reasoning: inductive vs. deductive 

The probability of a positive result in someone who has the disease is the test sensitivity.15 This probability 
progresses from cause (disease) to effect (test result), a natural way of thinking, called deductive. However, in 
clinical practice, we do not know if the patient has the disease (if we did, we would not need a test). We start from 
uncertainty: a clinical suspicion motivates the solicitation of the test and, once we have the result, we should 
think in the opposite direction: the probability that the positive test result (the effect) truly indicates the presence 
of disease (the cause): this probability is the PPV. It is an unnatural way of thinking, one for which our reasoning 
is hazier: a problem of reverse probability or inductive thinking. The same rationale applies to specificity (the 
probability of a negative test given the absence of disease) and NPV (the probability of not having the disease 
given a negative test).15

Diagnostic clinical reasoning is, therefore, predominantly inductive (Figure 1), and Bayes’ rule helps us deal with 
the complex issue of reverse probability and estimate what truly matters: whether the patient has the disease 
or not, based on the interaction between the observed evidence (diagnostic test result) and our prior knowledge 
(initial clinical suspicion). Let us consider a clinical example.

Figure 1. Deductive and inductive thinking in the diagnostic process

Legend: Individuals previously diagnosed with the disease through a gold standard test are subjected to a new test to determine its sensitivity. The test's 
sensitivity is calculated by measuring the proportion of positive results among these diseased individuals. This process involves forward probability and 

incorporates aspects of deductive reasoning. However, in clinical practice, clinicians often face the challenge of reasoning from the opposite direction. They 
need to estimate whether a patient with an unknown disease status is truly diseased, based on a positive test result. This type of reasoning involves reverse 

probability. It primarily employs inductive methods and Bayesian reasoning, enabling clinicians to update hypotheses (clinical suspicion) based on the available 
evidence (test result). 

Source: the authors (2024).

http://dx.doi.org/10.17267/2675-021Xevidence.2024.e5903
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4. Applying Bayesian reasoning to 
the diagnosis of Systemic Lupus 

Erythematosus (SLE)

SLE is a severe autoimmune disease characterized 
by autoantibodies against nuclear antigens, immune 
complex deposition, and chronic inflammation of 
target organs. Despite advances in treatment, this 
disease continues to have high morbidity and mortality 
rates.16 One of the main tests used in the diagnosis 
of SLE is the antinuclear antibody (ANA) test. It has a 
sensitivity and specificity of approximately 96% and 
86%, respectively, at a titer of 1:160.17 Despite being 
an accurate test for diagnosing a lethal and morbid 
disease, the use of the ANA test is not recommended 
for screening SLE in asymptomatic individuals18 and 
Bayesian reasoning can help us understand why.

Assuming a prevalence of SLE of 50 cases per 100,000 
individuals17 or 0.05% and applying these in Bayes’ 
formula, we have:

A PPV of 0.3% means the test has a 99.7% probability 
of being a false positive. 

An NPV of 99.99% means the test has almost 100% 
probability of being a true negative. Therefore, in 
this context, both the positive and negative results 
represent virtual certainty of the absence of disease. 
In the case of the positive test, misinterpretation 
as true positive can lead to bad clinical decisions 
and the negative test, although correct, ruled out 
something we should already know. In summary, 
for an asymptomatic individual, the ANA test result 
ranges from zero benefits to potential harm and 
should not be ordered.

Now, suppose a young female patient comes to 
the office with a history of fatigue, arthralgia, and 
skin lesions. After a thorough history and physical 
examination, the clinician suspects that SLE is among 
the differential diagnoses and estimates a 30% 
probability for the disease. This value corresponds 
to uncertainty, which makes us uncomfortable with 
assuming the diagnosis to the point of starting a 
treatment, but also with rejecting it and not identifying 
a serious disease needing treatment. This uncertainty 
can be reduced by requesting an ANA test. Let us 
examine how the test would perform if performed by 
applying the values in Bayes’ formulas:

A positive test result made the diagnosis more likely 
(PPV of 74,6%) and will motivate the rational request 
for additional tests, while a negative test result 
practically ruled out SLE (NPV of 98%) and will direct 
the approach towards finding alternative diagnoses.

Based on a clinical suspicion derived from a thorough 
medical history and targeted physical examination, 
the result of the same test proved to be extremely 
useful in the decision-making process.

5. Bayes’ rule and predictive values

After this example, let’s demonstrate the step-by-step 
development of Bayes’ formulas for PPV and NPV.

5.1 Bayes’ rule for PPV

We can conclude that a positive test is a true positive 
in two ways: through the deductive path or the 
inductive path.

http://dx.doi.org/10.17267/2675-021Xevidence.2024.e5903


5

J. Évid-Based Healthc., Salvador, 2024;6:e5903
http://dx.doi.org/10.17267/2675-021Xevidence.2024.e5903 | ISSN: 2675-021X

 

Deductive path: For a positive test result to be a 
true positive, two things must occur: the patient must 
have the disease AND the test must be positive for 
this patient. We will express the probability of having 
the disease before any test result as P(D+), the pre-
test probability (or prevalence) of the disease. We 
will express the probability of the test being positive 
given the presence of the disease as P(T+|D+), the 
sensitivity of the test. Since we are dealing with two 
independent conditions for a positive test result to 
qualify as a true positive, we multiply the probabilities:

Inductive path: For a positive test result to be a 
true positive, two things must occur: the test must 
be positive AND the patient with a positive test must 
have the disease. We will express the probability of 
the test being positive (regardless of whether it is 
a true or false positive) as P(T+) and the probability 
of having the disease given the positive test as 
P(D+|T+), the PPV. 

Since we are dealing with two independent conditions 
for a positive test result to qualify as a true positive, 
we multiply the probabilities:

As both expressions are mathematically the same, we 
can represent them as equals:

As previously mentioned, one of the main 
misconceptions in the interpretation of diagnostic 
tests is the mix between the probability of a positive 
test in someone who has the disease, i.e., P(T+|D+) 

and the probability of having the disease in someone 
who has a positive test, i.e., P(D+|T). They are different, 
yet related, probabilities. We can understand this 
relationship by moving P(T+) to the other side of the 
equation isolating the component that is relevant for 
decision-making and obtaining the original structure 
of Bayes’ theorem:

Replacing in the formula:

P(D+|T+) is the PPV;
P(D+) is the prevalence or pre-test probability;
P(T+|D+) is the sensitivity; 
P(T+) is the probability of any positive test, that is, 
true positives OR false positives. Understanding 
this component: for a test to be a true positive, 
the disease must be present, and the test must 
be positive in the presence of the disease: P(D+) x 
P(T+|D+). On the other hand, for a false positive, 
the patient must not have the disease P(D-), and 
the test must be positive in the patient without 
the disease P(T+|D-). Hence, the probability of a 
positive test is the sum of the probabilities of true 
positives and false positives as follows:

where:

P(D-) is the probability of not having the disease, or: 
1 - P(D+) 
P(T+|D-) is the probability of a positive test given 
that there is no disease. This is the complement of 
specificity, that is: 1 – P(T-|D-).

http://dx.doi.org/10.17267/2675-021Xevidence.2024.e5903
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Rewriting the theorem, substituting the notations of conditional probability with the terms used in the 
diagnostic process, we obtain Bayes rule for the PPV. So:

becomes:

5.2 Bayes’ rule for NPV

The development of the formula for the Negative Predictive Value (NPV) follows the same rationale. We can 
conclude that a negative test is a true negative in two ways: through the deductive path or the inductive path.

Deductive path: For a negative test result to be a true negative, two things must occur: the patient must not have 
the disease AND the test must return negative for this patient without the disease. We express the probability 
of not having the disease before any test result as P(D-) and the probability of the test being negative given the 
absence of the disease as P(T-|D-), the specificity of the test. Since we are dealing with two independent conditions 
for a negative test result to qualify as a true negative, we multiply the probabilities:

Inductive path: We can obtain the same result by taking the reverse path, starting from the test. For a 
negative test result to be a true negative, two things must occur: the test must be negative AND the patient 
with negative test must not have the disease. We express the probability of the test being negative (regardless 
of whether it is a true or false negative) as P(T-), and the probability of not having the disease given the 
negative test as P(D-|T-), the NPV. 

Since we are dealing with two independent conditions for a negative test result to qualify as true negative, we 
multiply the probabilities:

As both expressions are mathematically the same, we can represent them as equals.

http://dx.doi.org/10.17267/2675-021Xevidence.2024.e5903
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If we move P(T-) to the other side of the equation and isolate the component that is relevant for decision-making, 
we obtain the original structure of Bayes’ theorem:

Replacing in the formula:

P(D-|T-) is the NPV;
P(D-) is the probability of not having the disease before the test, or 1 – P(D+)
P(T-|D-) is the specificity; 
P(T-) is the probability of any negative test, that is, true negatives OR false negatives. Understanding this 
component: for a test to be a true negative, the disease must be absent, and the test must be negative in the 
absence of the disease: P(D-) x P(T-|D-). On the other hand, for a false negative test, the patient must have the 
disease P(D+), and the test must be negative in the patient with the disease P(T-|D+). Hence, the probability of a 
negative test is the sum of the probabilities of true and false negatives, as demonstrated below:

where:

P(T-|D+) is the probability of a negative test given the disease present, which is the complement of sensitivity, that is:
P(T-|D+) = 1 – P(T+|D+) or 1 – sensitivity

Rewriting the theorem, substituting the notations of conditional probability with the terms used in the diagnostic 
process, we obtain Bayes rule for the PPV. So:

becomes:

6. Discussion

Beyond its role as a mathematical instrument, Bayes’ rule is a rational framework for clinical decision, since it: 

1. Isolates what truly matters for clinical decision-making (predictive values); 
2. Mitigates the confusion between PPV and NPV with sensitivity and specificity, respectively, and demonstrates 

how these probabilities relate to each other; 
3. Legitimizes clinical reasoning (represented by the pre-test probability) as the most important component of 

the diagnostic process.

http://dx.doi.org/10.17267/2675-021Xevidence.2024.e5903
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We are not advocating the replacement of clinical judgment, which often involves a significant component of 
subjectivity19, by cold numbers. Excellent doctors are masters at applying Bayesian reasoning without ever 
having heard of Thomas Bayes or using any formulas. They understand that the most important component 
of the diagnostic process is the reasoning that originates it and the resulting clinical decision depends on 
interpreting results considering their interaction with the context, not in isolation. Bad clinical reasoning results 
in bad clinical decisions, despite how accurate the diagnostic test: garbage in, garbage out20. Good clinical 
judgment extracts valuable information from the test, allowing clear communication of uncertainty with the 
patient and good shared decisions. 

There are other ways to utilize the Bayesian framework such as applying likelihood ratios to pre-test odds21,22, 
Fagan’s nomogram23,24, and natural frequency trees.25 However, none of them works with the original structure of 
Bayes’ theorem, which, in addition to the points listed above, works exclusively with probabilities, eliminating the 
need for conversion to odds and reconversion to probabilities, as with likelihood ratios. 

We hope our step-by-step approach to Bayes’ rule can help mitigate the dangerous confusion between sensitivity/
PPV and specificity/NPV (Figure 2) and strengthen the idea that the value of a diagnostic test is directly proportional 
to the quality of clinical reasoning that leads to its request.

Figure 2. Bayes' theorem and its relationship with the components of the diagnostic process: Positive Predictive Value (A); Negative Predictive Value (B)

Source: the authors (2024).

http://dx.doi.org/10.17267/2675-021Xevidence.2024.e5903
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