Brain Imaging and neurostimulation in health and disorders: status report

Authors

DOI:

https://doi.org/10.17267/2965-3738bis.5167

Keywords:

Neuromodulation, Brain Stimulation, Brain Image, Neuroimage, Neuroscience

Abstract

INTRODUCTION: Despite being considered least important for clinical practice in the pyramid of evidence for recommendations, sometimes scientists' expert opinions could help to better understand the summarization of updated publications. OBJECTIVE: To provide a major summarized update about brain imaging and stimulation of the nervous system in health and disease. METHODS: Comprehensive review developed by experts in each subarea of knowledge in neuroimaging and non-invasive stimulation of the nervous system. A team of researchers and clinic experts was invited to present an update on their area of expertise. RESULTS: In basics on brain imaging techniques, we approach general and quantitative electroencephalography, functional magnetic resonance imaging, functional near-infrared spectroscopy, and experimental paradigms in brain imaging studies. Were included associations between transcranial magnetic stimulation and electromyography, electroencephalography, and functional near-infrared stimulation to evaluate brain activity. Furthermore, we showed several actualized central and peripheral neuromodulation techniques. And finally, we presented different clinical and performance uses of non-invasive neuromodulation. CONCLUSION: To our knowledge, this is a major summarized and concentrated update about brain imaging and stimulation that can benefit neuroscience researchers and clinicians from different levels of experience.

Author Biography

  • Katia Nunes Sá, Escola Bahiana de Medicina e Saúde Pública (Salvador). Bahia, Brazil.

    Lattes.cnpq.br/4313045041004715 ORCID - 0000-0002-0255-4379

References

(1) Chen S, He Z, Han X, He X, Li R, Zhu H, et al. How Big Data and High-performance Computing Drive Brain Science. Genomics Proteomics Bioinformatics. 2019;17(4):381-92. http://dx.doi.org/10.1016/j.gpb.2019.09.003

(2) Sá KN, Venas G, Souza MP, Andrade DC, Baptista AF. Brazilian research on noninvasive brain stimulation applied to health conditions. Arq. Neuropsiquiatr. 2021;79:974-981. http://dx.doi.org/10.1590/0004-282X-ANP-2020-0480

(3) Reti IM. A rational insurance coverage policy for repetitive transcranial magnetic stimulation for major depression. J ECT. 2013;29(2):e27-8. http://dx.doi.org/10.1097/YCT.0b013e3182801cd7

(4) Fregni F, Nitsche MA, Loo CK, Brunoni AR, Marangolo P, Leite J, et al. Regulatory Considerations for the Clinical and Research Use of Transcranial Direct Current Stimulation (tDCS): review and recommendations from an expert panel. Clin Res Regul Aff. 2015;32(1):22-35. http://dx.doi.org/10.3109/10601333.2015.980944

(5) Valero-Cabré A, Amengual JL, Stengel C, Pascual-Leone A, Coubard OA. Transcranial magnetic stimulation in basic and clinical neuroscience: A comprehensive review of fundamental principles and novel insights. Neurosci Biobehav Rev. 2017;83:381-404. http://dx.doi.org/10.1016/j.neubiorev.2017.10.006

(6) Hong KS, Khan MNA, Ghafoor U. Non-invasive transcranial electrical brain stimulation guided by functional near-infrared spectroscopy for targeted neuromodulation: a review. J Neural Eng. 2022;19(4). http://dx.doi.org/10.1088/1741-2552/ac857d

(7) Abellaneda-Pérez K, Vaqué-Alcázar L, Solé-Padullés C, Bartrés-Faz D. Combining non-invasive brain stimulation with functional magnetic resonance imaging to investigate the neural substrates of cognitive aging. J Neurosci Res. 2022;100(5):1159-70. http://dx.doi.org/10.1002/jnr.24514

(8) Cash RFH, Cocchi L, Lv J, Fitzgerald PB, Zalesky A. Functional Magnetic Resonance Imaging-Guided Personalization of Transcranial Magnetic Stimulation Treatment for Depression. JAMA Psychiatry. 2021;78(3):337-9. http://dx.doi.org/10.1001/jamapsychiatry.2020.3794

(9) Lin CS. Brain signature of chronic orofacial pain: a systematic review and meta-analysis on neuroimaging research of trigeminal neuropathic pain and temporomandibular joint disorders. PLoS One. 2014;9(4):e94300. http://dx.doi.org/10.1371/journal.pone.0094300

(10) Wu W, Zhang Y, Jiang J, Lucas MV, Fonzo GA, Rolle CE, et al. An electroencephalographic signature predicts antidepressant response in major depression. Nat Biotechnol. 2020;38(4):439-47. http://dx.doi.org/10.1038/s41587-019-0397-3

(11) Montenegro TS, Ali R, Arle JE. Closed-Loop Systems in Neuromodulation: Electrophysiology and Wearables. Neurosurg Clin N Am. 2022;33(3):297-303. http://dx.doi.org/10.1016/j.nec.2022.02.008

(12) Hendrickson T, Chen M, Mueller B, Francis S, Houlihan K, Opitz A, et al. An individualized non-invasive brain stimulation targeting pipeline using functional imaging data and SimNIBS. Brain Stimul. 2023;16(1):368. https://doi.org/10.1016/j.brs.2023.01.722

(13) Moreno JG, Biazoli Jr CE, Baptista AF, Trambaiolli LR. Closed-loop neurostimulation for affective symptoms and disorders: An overview. Biol Psychol. 2021;161:108081. http://dx.doi.org/10.1016/j.biopsycho.2021.108081

(14) Rossi S, Antal A, Bestmann S, Bikson M, Brewer C, Brockmöller J, et al. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clin Neurophysiol. 2021;132(1):269-306. http://dx.doi.org/10.1016/j.clinph.2020.10.003

(15) Rosson S, Filippis R, Croatto G, Collantoni E, Pallottino S, Guinart D, et al. Brain stimulation and other biological non-pharmacological interventions in mental disorders: An umbrella review. Neurosci Biobehav Rev. 2022;139:104743. http://dx.doi.org/10.1016/j.neubiorev.2022.104743

(16) Brini S, Brudasca NI, Hodkinson A, Kaluzinska K, Wach A, Storman D, et al. Efficacy and safety of transcranial magnetic stimulation for treating major depressive disorder: An umbrella review and re-analysis of published meta-analyses of randomised controlled trials. Clin Psychol Rev. 2023;100:102236. http://dx.doi.org/10.1016/j.cpr.2022.102236

(17) Drumm S, Bradley C, Moriarty F. “More of an art than a science”? The development, design and mechanics of the Delphi Technique. Res Social Adm Pharm. 2022;18(1):2230-6. http://dx.doi.org/10.1016/j.sapharm.2021.06.027

(18) Murphy MK. Consensus Development Methods, and Their Use in Clinical Guideline Development [Internet]. 2nd. vol. Winchester: Health Technology Assessment; 1998. Available from: https://books.google.com/books/about/Consensus_Development_Methods_and_Their.html?hl=&id=QiV_wgEACAAJ

(19) Müller-Putz GR. Electroencephalography. Handb Clin Neurol. 2020;168:249-62. http://dx.doi.org/10.1016/B978-0-444-63934-9.00018-4

(20) Olejniczak P. Neurophysiologic basis of EEG. J Clin Neurophysiol. 2006;23(3):186-9. http://dx.doi.org/10.1097/01.wnp.0000220079.61973.6c

(21) Jackson AF, Bolger DJ. The neurophysiological bases of EEG and EEG measurement: a review for the rest of us. Psychophysiology. 2014;51(11):1061-71. http://dx.doi.org/10.1111/psyp.12283

(22)Buzsáki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes. Nat Rev Neurosci. 2012;13(6):407-20. http://dx.doi.org/10.1038/nrn3241

(23) Mussigmann T, Bardel B, Lefaucheur JP. Resting-state electroencephalography (EEG) biomarkers of chronic neuropathic pain. A systematic review. Neuroimage. 2022;258:119351. http://dx.doi.org/10.1016/j.neuroimage.2022.119351

(24) Horvath A, Szucs A, Csukly G, Sakovics A, Stefanics G, Kamondi A. EEG and ERP biomarkers of Alzheimer’s disease: a critical review. Front Biosci. 2018;23(2):183-220. https://doi.org/10.2741/4587

(25) Waninger S, Berka C, Stevanovic Karic M, Korszen S, Mozley PD, Henchcliffe C, et al. Neurophysiological Biomarkers of Parkinson’s Disease. J Parkinsons Dis. 2020;10(2):471-80. http://dx.doi.org/10.3233/JPD-191844

(26) Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52(3):1059-69. http://dx.doi.org/10.1016/j.neuroimage.2009.10.003

(27) Babiloni C, Lizio R, Marzano N, Capotosto P, Soricelli A, Triggiani AI, et al. Brain neural synchronization and functional coupling in Alzheimer’s disease as revealed by resting state EEG rhythms. Int J Psychophysiol. 2016;103:88-102. http://dx.doi.org/10.1016/j.ijpsycho.2015.02.008

(28) Stam CJ. Modern network science of neurological disorders. Nat Rev Neurosci. 2014;15(10):683-95. https://doi.org/10.1038/nrn3801

(29) Friston KJ. Functional and effective connectivity: a review. Brain Connect. 2011;1(1):13-36. http://dx.doi.org/10.1089/brain.2011.0008

(30) Tommaso M, Trotta G, Vecchio E, Ricci K, Van de Steen F, Montemurno A, et al. Functional Connectivity of EEG Signals Under Laser Stimulation in Migraine. Front Hum Neurosci. 2015;9:640. http://dx.doi.org/10.3389/fnhum.2015.00640

(31) Santana JERS, Baptista AF, Lucena R, Lopes TS, Rosário RS, Xavier MR, et al. Altered Dynamic Brain Connectivity in Individuals With Sickle Cell Disease and Chronic Pain Secondary to Hip Osteonecrosis. Clin EEG Neurosci. 2021;54(3):333-42. http://dx.doi.org/10.1177/15500594211054297

(32) Jack Jr CR, Wiste HJ, Schwarz CG, Lowe VJ, Senjem ML, Vemuri P, et al. Longitudinal tau PET in ageing and Alzheimer’s disease. Brain. 2018;141(5):1517-28. https://doi.org/10.1093/brain/awy059

(33) Babiloni C, Arakaki X, Azami H, Bennys K, Blinowska K, Bonanni L, et al. Measures of resting state EEG rhythms for clinical trials in Alzheimer’s disease: Recommendations of an expert panel. Alzheimers Dement. 2021;17(9):1528-53. http://dx.doi.org/10.1002/alz.12311

(34) Babiloni C, Blinowska K, Bonanni L, Cichocki A, De Haan W, Del Percio C, et al. What electrophysiology tells us about Alzheimer’s disease: a window into the synchronization and connectivity of brain neurons. Neurobiol Aging. 2020;85:58-73. http://dx.doi.org/10.1016/j.neurobiolaging.2019.09.008

(35) Rossini PM, Di Iorio R, Vecchio F, Anfossi M, Babiloni C, Bozzali M, et al. Early diagnosis of Alzheimer’s disease: the role of biomarkers including advanced EEG signal analysis. Report from the IFCN-sponsored panel of experts. Clin Neurophysiol. 2020;131(6):1287-310. http://dx.doi.org/10.1016/j.clinph.2020.03.003

(36) Canuet L, Tellado I, Couceiro V, Fraile C, Fernandez-Novoa L, Ishii R, et al. Resting-State Network Disruption and APOE Genotype in Alzheimer’s Disease: A lagged Functional Connectivity Study. PLoS One. 2012;7(9):e46289. https://doi.org/10.1371/journal.pone.0046289

(37) Jelic V, Johansson SE, Almkvist O, Shigeta M, Julin P, Nordberg A, et al. Quantitative electroencephalography in mild cognitive impairment: longitudinal changes and possible prediction of Alzheimer’s disease. Neurobiol Aging. 2000;21(4):533-40. http://dx.doi.org/10.1016/s0197-4580(00)00153-6

(38) Fonseca LC, Tedrus GMAS, Carvas PN, Machado ECFA. Comparison of quantitative EEG between patients with Alzheimer’s disease and those with Parkinson's disease dementia. Clin Neurophysiol. 2013;124(10):1970-4 http://dx.doi.org/10.1016/j.clinph.2013.05.001

(39) Andersson M, Hansson O, Minthon L, Rosén I, Londos E. Electroencephalogram Variability in Dementia with Lewy Bodies, Alzheimer’s Disease and Controls. Dement Geriatr Cogn Disord. 2008;26(3):284-290. https//doi.org/10.1159/000160962

(40) Kai T, Asai Y, Sakuma K, Koeda T, Nakashima K. Quantitative electroencephalogram analysis in dementia with Lewy bodies and Alzheimer’s disease. J Neurol Sci. 2005;237(1-2):89-95. http://doi.org/q0.1016/j.jns.2005.05.017

(41) Bonanni L, Franciotti R, Nobili F, Kramberger MG, Taylor JP, Garcia-Ptacek S, et al. EEG Markers of Dementia with Lewy Bodies: A Multicenter Cohort Study. J Alzheimers Dis. 2016;54(4):1649-57. https://doi.org/10.3233/jad-160435

(42) San-Martin R, Fraga FJ, Del Percio C, Lizio R, Noce G, Nobili F, et al. Classification of Patients with Alzheimer’s Disease and Dementia with Lewy Bodies using Resting EEG Selected Features at Sensor and Source Levels: A Proof-of-Concept Study. Curr Alzheimer Res. 2021;18(12):956-69. https://doi.org/10.2174/1567205018666211027143944

(43) Glover GH. Overview of functional magnetic resonance imaging. Neurosurg Clin N Am. 2011;22(2):133-9. http://dx.doi.org/10.1016/j.nec.2010.11.001

(44) Bandettini PA. fMRI. Massachusetts: The MIT Press; 2020.

(45) Lee MH, Smyser CD, Shimony JS. Resting-state fMRI: a review of methods and clinical applications. AJNR Am J Neuroradiol. 2013;34(10):1866-72. http://dx.doi.org/10.3174/ajnr.A3263

(46) Logothetis NK. What we can do and what we cannot do with fMRI. Nature. 2008;453(7197):869-78. http://dx.doi.org/10.1038/nature06976

(47) Strangman G, Boas DA, Sutton JP. Non-invasive neuroimaging using near-infrared light. Biol Psychiatry¬. 2002;52(7):679-93. http://dx.doi.org/10.1016/s0006-3223(02)01550-0

(48) Ferrari M, Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage. 2012;63(2):921-35. http://dx.doi.org/10.1016/j.neuroimage.2012.03.049

(49)Villringer A, Planck J, Hock C, Schleinkofer L, Dirnagl U. Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci Lett. 1993;154(1-2):101-4. http://dx.doi.org/10.1016/0304-3940(93)90181-j

(50) Morais GAZ, Balardin JB, Sato JR. fNIRS Optodes’ Location Decider (fOLD): a toolbox for probe arrangement guided by brain regions-of-interest. Sci Rep. 2018;8(1):3341. http://dx.doi.org/10.1038/s41598-018-21716-z

(51) Balardin JB, Morais GAZ, Furucho RA, Trambaiolli L, Vanzella P, Biazoli Jr C, et al. Imaging Brain Function with Functional Near-Infrared Spectroscopy in Unconstrained Environments. Front Hum Neurosci. 2017;11:258. http://dx.doi.org/10.3389/fnhum.2017.00258

(52) Vanzella P, Balardin JB, Furucho RA, Morais GAZ, Janzen TB, Sammler D, et al. fNIRS Responses in Professional Violinists While Playing Duets: Evidence for Distinct Leader and Follower Roles at the Brain Level. Front Psychol. 2019;10:164. http://dx.doi.org/10.3389/fpsyg.2019.00164

(53) Ayaz H, Baker WB, Blaney G, Boas DA, Bortfeld H, Brady K, et al. Optical imaging and spectroscopy for the study of the human brain: status report. Neurophotonics. 2022;9(suppl 2):S24001. https://doi.org/10.1117/1.nph.9.s2.s24001

(54) Aiello M, Cavaliere C, D’Albore A, Salvatore M. The Challenges of Diagnostic Imaging in the Era of Big Data. J Clin Med Res. 2019;8(3):316. http://dx.doi.org/10.3390/jcm8030316

(55) Li X, Guo N, Li Q. Functional Neuroimaging in the New Era of Big Data. Genomics Proteomics Bioinformatics. 2019;17(4):393-401. http://dx.doi.org/10.1016/j.gpb.2018.11.005

(56) Bzdok D, Schulz MA, Lindquist M. Emerging shifts in neuroimaging data analysis in the era of “big data.” In: Passos I, Mwangi B, Kapczinski F. (eds). Personalized Psychiatry. Springer; 2019. p. 99-118. https://doi.org/10.1007/978-3-030-03553-2_6

(57) White T, Blok E, Calhoun VD. Data sharing and privacy issues in neuroimaging research: Opportunities, obstacles, challenges, and monsters under the bed. Hum Brain Mapp. 2022;43(1):278-91. http://dx.doi.org/10.1002/hbm.25120

(58) Stumpo V, Kernbach JM, van Niftrik CHB, Sebök M, Fierstra J, Regli L, et al. Machine Learning Algorithms in Neuroimaging: An Overview. Acta Neurochir Suppl. 2022;134:125-38. http://dx.doi.org/10.1007/978-3-030-85292-4_17

(59) Buchlak QD, Esmaili N, Leveque JC, Farrokhi F, Bennett C, Piccardi M, et al. Machine learning applications to clinical decision support in neurosurgery: an artificial intelligence augmented systematic review. Neurosurg Rev. 2020;43(5):1235-53. http://dx.doi.org/10.1007/s10143-019-01163-8

(60) Choi KS, Sunwoo L. Artificial intelligence in neuroimaging: Clinical applications. Investig Magn Reson Imaging. 2022;26(1):1-9. https://doi.org/10.13104/imri.2022.26.1.1

(61) Lefaucheur JP. Transcranial magnetic stimulation. Handb Clin Neurol. 2019;160:559-80. http://dx.doi.org/10.1016/B978-0-444-64032-1.00037-0

(62) Rossini PM, Rossi S. Transcranial magnetic stimulation: diagnostic, therapeutic, and research potential. Neurology. 2007;68(7):484-8. https://doi.org/10.1212/01.wnl.0000250268.13789.b2

(63) Klomjai W, Katz R, Lackmy-Vallée A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann Phys Rehabil Med. 2015;58(4):208-13. http://dx.doi.org/10.1016/j.rehab.2015.05.005

(64) Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120(12):2008-39. http://dx.doi.org/10.1016/j.clinph.2009.08.016

(65) Di Lazzaro V, Rothwell J, Capogna M. Noninvasive Stimulation of the Human Brain: Activation of Multiple Cortical Circuits. Neuroscientist. 2018;24(3):246-60. http://dx.doi.org/10.1177/1073858417717660

(66) Tugin S, Souza VH, Nazarova MA, Novikov PA, Tervo AE, Nieminen JO, et al. Effect of stimulus orientation and intensity on short-interval intracortical inhibition (SICI) and facilitation (SICF): A multi-channel transcranial magnetic stimulation study. PLoS One 2021;16(9):e0257554. http://doi.org/10.1371/journal.pone.0257554

(67) Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol. 2015;126(6):1071-107. http://dx.doi.org/10.1016/j.clinph.2015.02.001

(68) Hallett M. Transcranial magnetic stimulation and the human brain. Nature. 2000;406(6792):147-50. http://doi.org/10.1038/35018000

(69) Darling WG, Wolf SL, Butler AJ. Variability of motor potentials evoked by transcranial magnetic stimulation depends on muscle activation. Exp Brain Res. 2006;174(2):376-85. https://doi.org/10.1007/s00221-006-0468-9

(70) Thickbroom GW, Byrnes ML, Mastaglia FL. A model of the effect of MEP amplitude variation on the accuracy of TMS mapping. Clin Neurophysiol. 1999;110(5):941-3. https://doi.org/10.1016/s1388-2457(98)00080-7

(71) Kiers L, Cros D, Chiappa KH, Fang J. Variability of motor potentials evoked by transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol. 1993;89(6):415-23. https://doi.org/10.1016/0168-5597(93)90115-6

(72) Vucic S, Howells J, Trevillion L, Kiernan MC. Assessment of cortical excitability using threshold tracking techniques. Muscle Nerve. 2006;33(4):477-86. https://doi.org/10.1002/mus.20481

(73) Samusyte G, Bostock H, Rothwell J, Koltzenburg M. Short-interval intracortical inhibition: Comparison between conventional and threshold-tracking techniques. Brain Stimul. 2018;11(4):806-17. https://doi.org/10.1016/j.brs.2018.03.002

(74) Matamala JM, Howells J, Dharmadasa T, Trinh T, Ma Y, Lera L, et al. Inter-session reliability of short-interval intracortical inhibition measured by threshold tracking TMS. Neurosci Lett. 2018;674:18-23. https://doi.org/10.1016/j.neulet.2018.02.065

(75) Nielsen CS, Samusyte G, Pugdahl K, Blicher JU, Fuglsang-Frederiksen A, Cengiz B, et al. Test-Retest Reliability of Short-Interval Intracortical Inhibition Assessed by Threshold-Tracking and Automated Conventional Techniques. eNeuro. 2021;8(5):ENEURO.0103-21.2021. https://doi.org/10.1523/eneuro.0103-21.2021

(76) Huynh W, Vucic S, Krishnan AV, Lin CS, Hornberger M, Kiernan MC. Longitudinal plasticity across the neural axis in acute stroke. Neurorehabil Neural Repair. 2013;27(3):219-29. https://doi.org/10.1177/1545968312462071

(77) Vucic S, Kiernan MC. Novel threshold tracking techniques suggest that cortical hyperexcitability is an early feature of motor neuron disease. Brain. 2006;129(9):2436-46. https://doi.org/10.1093/brain/awl172

(78) Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Marra C, et al. Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2004;75(4):555-9. https://doi.org/10.1136/jnnp.2003.018127

(79) Vucic S, Burke T, Lenton K, Ramanathan S, Gomes L, Yannikas C, et al. Cortical dysfunction underlies disability in multiple sclerosis. Mult Scler. 2012;18(4):425-32. https://doi.org/10.1177/1352458511424308

(80) Vucic S, Kiernan MC. Cortical excitability testing distinguishes Kennedy's disease from amyotrophic lateral sclerosis. Clin Neurophysiol. 2008;119(5):1088-96. https://doi.org/10.1016/j.clinph.2008.01.011

(81) Siebner HR, Bergmann TO, Bestmann S, Massimini M, Johansen-Berg H, Mochizuki H, et al. Consensus paper: combining transcranial stimulation with neuroimaging. Brain Stimul. 2009;2(2):58-80. https://doi.org/10.1016/j.brs.2008.11.002

(82) Rosanova M, Casali A, Bellina V, Resta F, Mariotti M, Massimini M. Natural frequencies of human corticothalamic circuits. J Neurosci. 2009;29(24):7679-85. https://doi.org/10.1523/jneurosci.0445-09.2009

(83) Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G. Breakdown of cortical effective connectivity during sleep. Science. 2005;309(5744):2228-32. https://doi.org/10.1126/science.1117256

(84) Tremblay S, Rogasch NC, Premoli I, Blumberger DM, Casarotto S, Chen R, et al. Clinical utility and prospective of TMS-EEG. Clin Neurophysiol. 2019;130(5):802-44. https://doi.org/10.1016/j.clinph.2019.01.001

(85) Kumar S, Zomorrodi R, Ghazala Z, Goodman MS, Blumberger DM, Cheam A, et al. Extent of Dorsolateral Prefrontal Cortex Plasticity and Its Association With Working Memory in Patients With Alzheimer Disease. JAMA Psychiatry. 2017;74(12):1266-74. https://doi.org/10.1001/jamapsychiatry.2017.3292

(86) Casula EP, Stampanoni Bassi M, Pellicciari MC, Ponzo V, Veniero D, Peppe A, et al. Subthalamic stimulation and levodopa modulate cortical reactivity in Parkinson's patients. Parkinsonism Relat Disord. 2017;34:31-37. https://doi.org/10.1016/j.parkreldis.2016.10.009

(87) Pellicciari MC, Bonnì S, Ponzo V, Cinnera AM, Mancini M, Casula EP, et al. Dynamic reorganization of TMS-evoked activity in subcortical stroke patients. Neuroimage. 2018;175:365-78. https://doi.org/10.1016/j.neuroimage.2018.04.011

(88) Kimiskidis VK, Tsimpiris A, Ryvlin P, Kalviainen R, Koutroumanidis M, Valentin A, et al. TMS combined with EEG in genetic generalized epilepsy: A phase II diagnostic accuracy study. Clin Neurophysiol. 2017;128(2):367-81. https://doi.org/10.1016/j.clinph.2016.11.013

(89) Kaskie RE, Ferrarelli F. Investigating the neurobiology of schizophrenia and other major psychiatric disorders with Transcranial Magnetic Stimulation. Schizophr Res. 2018;192:30-38. https://doi.org/10.1016/j.schres.2017.04.045

(90) Canali P, Casarotto S, Rosanova M, Sferrazza-Papa G, Casali AG, Gosseries O, et. Abnormal brain oscillations persist after recovery from bipolar depression. Eur Psychiatry. 2017;41:10-15. https://doi.org/10.1016/j.eurpsy.2016.10.005

(91) Rosanova MT, Stamboulian D, Lede R. Systematic review: which topical agent is more efficacious in the prevention of infections in burn patients? Arch Argent Pediatr. 2012;110(4):298-303. https://doi.org/10.5546/aap.2012.eng.298

(92) Casali AG, Gosseries O, Rosanova M, Boly M, Sarasso S, Casali KR, et al. A theoretically based index of consciousness independent of sensory processing and behavior. Sci Transl Med. 2013;5(198):198ra105. https://doi.org/10.1126/scitranslmed.3006294

(93) Comolatti R, Pigorini A, Casarotto S, Fecchio M, Faria G, Sarasso S, et al. A fast and general method to empirically estimate the complexity of brain responses to transcranial and intracranial stimulations. Brain Stimul. 2019;12(5):1280-9. https://doi.org/10.1016/j.brs.2019.05.013

(94) Kondziella D, Bender A, Diserens K, van Erp W, Estraneo A, Formisano R, et al. European Academy of Neurology guideline on the diagnosis of coma and other disorders of consciousness. Eur J Neurol. 2020;27(5):741-56. https://doi.org/10.1111/ene.14151

(95) Lioumis P, Rosanova M. The role of neuronavigation in TMS-EEG studies: Current applications and future perspectives. J Neurosci Methods. 2022;380:109677. https://doi.org/10.1016/j.jneumeth.2022.109677

(96) Casarotto S, Fecchio M, Rosanova M, Varone G, D'Ambrosio S, Sarasso S, et al. The rt-TEP tool: real-time visualization of TMS-Evoked Potentials to maximize cortical activation and minimize artifacts. J Neurosci Methods. 2022;370:109486. https://doi.org/10.1016/j.jneumeth.2022.109486

(97) Rocchi L, Di Santo A, Brown K, Ibáñez J, Casula E, Rawji V, et al. Disentangling EEG responses to TMS due to cortical and peripheral activations. Brain Stimul. 2021;14(1):4-18. https://doi.org/10.1016/j.brs.2020.10.011

(98) Rogasch NC, Sullivan C, Thomson RH, Rose NS, Bailey NW, Fitzgerald PB, et al. Analysing concurrent transcranial magnetic stimulation and electroencephalographic data: A review and introduction to the open-source TESA software. Neuroimage. 2017;147:934-51. https://doi.org/10.1016/j.neuroimage.2016.10.031

(99) Belardinelli P, Biabani M, Blumberger DM, Bortoletto M, Casarotto S, David O, et al. Reproducibility in TMS-EEG studies: A call for data sharing, standard procedures and effective experimental control. Brain Stimul. 2019;12(3):787-90. https://doi.org/10.1016/j.brs.2019.01.010

(100) Julkunen P, Kimiskidis VK, Belardinelli P. Bridging the gap: TMS-EEG from lab to clinic. J Neurosci Methods. 2022;369:109482. https://doi.org/10.1016/j.jneumeth.2022.109482

(101) Wang K, Chen H, Li X. Real-time fNIRS signal acquisition system: Compatible with TMS. Chinese Automation Congress (CAC); 2017. https://doi.org/10.1109/cac.2017.8243166

(102) Oliviero A, Di Lazzaro V, Piazza O, Profice P, Pennisi MA, Della Corte F, et al. Cerebral blood flow and metabolic changes produced by repetitive magnetic brain stimulation. J Neurol. 1999;246(12):1164-8. https://doi.org/10.1007/s004150050536

(103) Kozel FA, Tian F, Dhamne S, Croarkin PE, McClintock SM, Elliott A, et al. Using simultaneous repetitive Transcranial Magnetic Stimulation/functional Near Infrared Spectroscopy (rTMS/fNIRS) to measure brain activation and connectivity. Neuroimage. 2009;47(4):1177-84. https://doi.org/10.1016/j.neuroimage.2009.05.016

(104) Curtin A, Tong S, Sun J, Wang J, Onaral B, Ayaz H. A Systematic Review of Integrated Functional Near-Infrared Spectroscopy (fNIRS) and Transcranial Magnetic Stimulation (TMS) Studies. Front Neurosci. 2019;13:84. https://doi.org/10.3389/fnins.2019.00084

(105) Jiang S, Carpenter LL, Jiang H. Optical neuroimaging: advancing transcranial magnetic stimulation treatments of psychiatric disorders. Vis Comput Ind Biomed Art. 2022;5:22. https://doi.org/10.1186%2Fs42492-022-00119-y

(106) Burke MJ, Fried PJ, Pascual-Leone A. Transcranial magnetic stimulation: Neurophysiological and clinical applications. Handb Clin Neurol. 2019;163:73-92. https://doi.org/10.1016/b978-0-12-804281-6.00005-7

(107) Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;325(8437):1106-7. https://doi.org/10.1016/s0140-6736(85)92413-4

(108) Fitzgerald PB, Daskalakis ZJ. An introduction to the basic principles of TMS and rTMS. In: Repetitive Transcranial Magnetic Stimulation Treatment for Depressive Disorders. Berlin: Springer; 2013. https://doi.org/10.1007/978-3-642-36467-9_1

(109) Terao Y, Ugawa Y. Basic mechanisms of TMS. J Clin Neurophysiol. 2002;19(4):322-43. https://doi.org/10.1097/00004691-200208000-00006

(110) Wassermann EM. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5-7, 1996. Electroencephalogr Clin Neurophysiol. 1998;108(1):1-16. https://doi.org/10.1016/s0168-5597(97)00096-8

(111) Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018). Clin Neurophysiol. 2020;131(2):474-528. https://doi.org/10.1016/j.clinph.2019.11.002

(112) Cárdenas-Morales L, Nowak DA, Kammer T, Wolf RC, Schönfeldt-Lecuona C. Mechanisms and applications of theta-burst rTMS on the human motor cortex. Brain Topogr. 2010;22(4):294-306. https://doi.org/10.1007/s10548-009-0084-7

(113) Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45(2):201-6. https://doi.org/10.1016/j.neuron.2004.12.033

(114) Staubli U, Lynch G. Stable hippocampal long-term potentiation elicited by 'theta' pattern stimulation. Brain Res. 1987;435(1-2):227-34. https://doi.org/10.1016/0006-8993(87)91605-2

(115) Rounis E, Huang YZ. Theta burst stimulation in humans: a need for better understanding effects of brain stimulation in health and disease. Exp Brain Res. 2020;238(7-8):1707-14. https://doi.org/10.1007/s00221-020-05880-1

(116) Han C, Chen Z, Liu L. Commentary: Effectiveness of theta burst vs. high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomized non-inferiority trial. Front Hum Neurosci. 2018;12:255. https://doi.org/10.3389%2Ffnhum.2018.00255

(117) Chung SW, Hill AT, Rogasch NC, Hoy KE, Fitzgerald PB. Use of theta-burst stimulation in changing excitability of motor cortex: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2016;63:43-64. https://doi.org/10.1016/j.neubiorev.2016.01.008

(118) Di Lazzaro V, Pilati F, Dileone M, Profice P, Oliviero A, Mazzone P, et al. The physiological basis of the effects of intermittent theta burst stimulation of the human motor cortex. J Physiol. 2008;586(Pt 16):3871-79. https://doi.org/10.1113%2Fjphysiol.2008.152736

(119) Goldsworthy MR, Pitcher JB, Ridding MC. A comparison of two different continuous theta burst stimulation paradigms applied to the human primary motor cortex. Clin Neurophysiol. 2012;123(11):2256-63. https://doi.org/10.1016/j.clinph.2012.05.001

(120) Wu SW, Shahana N, Huddleston DA, Gilbert DL. Effects of 30Hz θ burst transcranial magnetic stimulation on the primary motor cortex. J Neurosci Methods. 2012;208(2):161-4. https://doi.org/10.1016%2Fj.jneumeth.2012.05.014

(121) Cole EJ, Stimpson KH, Bentzley BS, Gulser M, Cherian K, Tischler C, et al. Stanford Accelerated Intelligent Neuromodulation Therapy for Treatment-Resistant Depression. Am J Psychiatry. 2020;177(8):716-26. https://doi.org/10.1176/appi.ajp.2019.19070720

(122) Moukhaiber N, Summers SJ, Opar D, Imam J, Thomson D, Chang WJ, et al. The Effect of Theta Burst Stimulation Over the Primary Motor Cortex on Experimental Hamstring Pain: A Randomized, Controlled Study. J Pain. 2023; 24(4):593-604. https://doi.org/10.1016/j.jpain.2022.11.013

(123) Moisset X, Goudeau S, Poindessous-Jazat F, Baudic S, Clavelou P, Bouhassira D. Prolonged continuous theta-burst stimulation is more analgesic than 'classical' high frequency repetitive transcranial magnetic stimulation. Brain Stimul. 2015;8(1):135-41. https://doi.org/10.1016/j.brs.2014.10.006

(124) Hong S-M, Kim S.-K, Seo M-Y, Kang S-Y. Multiple Daily Rounds of Theta-Burst Stimulation for Tinnitus: Preliminary Results. Medicina (Kaunas). 2021;57(8):743. https://doi.org/10.3390%2Fmedicina57080743

(125) Nursey J, Sbisa A, Knight H, Ralph N, Cowlishaw S, Forbes D, et al. Exploring Theta Burst Stimulation for Post-traumatic Stress Disorder in Australian Veterans-A Pilot Study. Mil Med. 2020;185(9-10):e1770-e1778. https://doi.org/10.1093/milmed/usaa149

(126) Elmaghraby R, Sun Q, Ozger C, Shekunov J, Romanowicz M, Croarkin PE. A Systematic Review of the Safety and Tolerability of Theta Burst Stimulation in Children and Adolescents. Neuromodulation. 2022;25(4):494-503. https://doi.org/10.1111/ner.13455

(127) Mallik G, Mishra P, Garg S, Dhyani M, Tikka SK, Tyagi P. Safety and Efficacy of Continuous Theta Burst "Intensive" Stimulation in Acute-Phase Bipolar Depression: A Pilot, Exploratory Study. J ECT. 2023;39(1):28-33. https://doi.org/10.1097/yct.0000000000000870

(128) Lefaucheur JP, Wendling F. Mechanisms of action of tDCS: A brief and practical overview. Neurophysiol Clin. 2019;49(4):269-275. https://doi.org/10.1016/j.neucli.2019.07.013

(129) Evans C, Zich C, Lee JSA, Ward N, Bestmann S. Inter-individual variability in current direction for common tDCS montages. Neuroimage. 2022;260:119501. https://doi.org/10.1016/j.neuroimage.2022.119501

(130) Samani MM, Agboada D, Jamil A, Kuo MF, Nitsche MA. Titrating the neuroplastic effects of cathodal transcranial direct current stimulation (tDCS) over the primary motor cortex. Cortex. 2019;119:350-361. https://doi.org/10.1016/j.cortex.2019.04.016

(131) Datta A, Elwassif M, Battaglia F, Bikson M. Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis. J Neural Eng. 2008;5(2):163-74. https://doi.org/10.1088/1741-2560/5/2/007

(132) Ciechanski P, Carlson HL, Yu SS, Kirton A. Modeling Transcranial Direct-Current Stimulation-Induced Electric Fields in Children and Adults. Front Hum Neurosci. 2018;12:268. https://doi.org/10.3389/fnhum.2018.00268

(133) Mikkonen M, Laakso I, Tanaka S, Hirata A. Cost of focality in TDCS: Interindividual variability in electric fields. Brain Stimul. 2020;13(1):117-24. https://doi.org/10.1016/j.brs.2019.09.017

(134) Caparelli-Daquer EM, Zimmermann TJ, Mooshagian E, Parra LC, Rice JK, Datta A, et al. A pilot study on effects of 4×1 high-definition tDCS on motor cortex excitability. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:735-8. https://doi.org/10.1109/embc.2012.6346036

(135) Lazarev VV, Gebodh N, Tamborino T, Bikson M, Caparelli-Daquer EM. Experimental-design Specific Changes in Spontaneous EEG and During Intermittent Photic Stimulation by High Definition Transcranial Direct Current Stimulation. Neuroscience. 2020;426:50-58. https://doi.org/10.1016/j.neuroscience.2019.11.016

(136) Amaral L, Donato R, Valério D, Caparelli-Dáquer E, Almeida J, Bergströnm F. Disentangling hand and tool processing: distal effects of neuromodulation. Cortex. 2022;157:142-54. https://doi.org/10.1016/j.cortex.2022.08.011

(137) Richardson J, Datta A, Dmochowski J, Parra LC, Fridriksson J. Feasibility of using high-definition transcranial direct current stimulation (HD-tDCS) to enhance treatment outcomes in persons with aphasia. NeuroRehabilitation. 2015;36(1):115-26. https://doi.org/10.3233/nre-141199

(138) Andrade SM, Silvestre MCA, França EÉT, Queiroz MHBS, Santana KJ, Madruga MLLH, et al. Efficacy and safety of HD-tDCS and respiratory rehabilitation for critically ill patients with COVID-19 The HD-RECOVERY randomized clinical trial. Brain Stimul. 2022;15(3):780-8. https://doi.org/10.1016/j.brs.2022.05.006

(139) Machado DGS, Bikson M, Datta A, Caparelli-Dáquer E, Unal G, Baptista AF, et al. Acute effect of high-definition and conventional tDCS on exercise performance and psychophysiological responses in endurance athletes: a randomized controlled trial. Sci Rep. 2021;11(1):13911. https://doi.org/10.1038/s41598-021-92670-6

(140) Santana K, França E, Sato J, Silva A, Queiroz M, Farias J, et al. Non-invasive brain stimulation for fatigue in post-acute sequelae of SARS-CoV-2 (PASC). Brain Stimul. 2023;16(1):100-7. https://doi.org/10.1016%2Fj.brs.2023.01.1672

(141) Antal A, Paulus W. Transcranial alternating current stimulation (tACS). Front Hum Neurosci. 2013;7:317. https://doi.org/10.3389/fnhum.2013.00317

(142) Tavakoli AV, Yun K. Transcranial Alternating Current Stimulation (tACS) Mechanisms and Protocols. Front Cell Neurosci. 2017;11:214. https://doi.org/10.3389/fncel.2017.00214

(143) Schutter DJLG, Wischnewski M. A meta-analytic study of exogenous oscillatory electric potentials in neuroenhancement. Neuropsychologia. 2016;86:110-8. https://doi.org/10.1016/j.neuropsychologia.2016.04.011

(144) Helfrich RF, Schneider TR, Rach S, Trautmann-Lengsfeld SA, Engel AK, Herrmann CS. Entrainment of brain oscillations by transcranial alternating current stimulation. Curr Biol. 2014;24(3):333-9. https://doi.org/10.1016/j.cub.2013.12.041

(145) Ali MM, Sellers KK, Fröhlich F. Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. J Neurosci. 2013;33(27):11262-75. https://doi.org/10.1523/jneurosci.5867-12.2013

(146) Bland NS, Sale MV. Current challenges: the ups and downs of tACS. Exp Brain Res. 2019;237(12):3071-88. https://doi.org/10.1007/s00221-019-05666-0

(147) Moisa M, Polania R, Grueschow M, Ruff CC. Brain Network Mechanisms Underlying Motor Enhancement by Transcranial Entrainment of Gamma Oscillations. J Neurosci. 2016;36(47):12053-65. https://doi.org/10.1523/jneurosci.2044-16.2016

(148) Elyamany O, Leicht G, Herrmann CS, Mulert C. Transcranial alternating current stimulation (tACS): from basic mechanisms towards first applications in psychiatry. Eur Arch Psychiatry Clin Neurosci. 2021;271(1):135-56. https://doi.org/10.1007/s00406-020-01209-9

(149) Terney D, Chaieb L, Moliadze V, Antal A, Paulus W. Increasing human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci. 2008;28(52):14147-55. https://doi.org/10.1523%2FJNEUROSCI.4248-08.2008

(150) Potok W, van der Groen O, Bächinger M, Edwards D, Wenderoth N. Transcranial Random Noise Stimulation Modulates Neural Processing of Sensory and Motor Circuits, from Potential Cellular Mechanisms to Behavior: A Scoping Review. eNeuro. 2022;9(1):ENEURO.0248-21.2021. https://doi.org/10.1523/eneuro.0248-21.2021

(151) Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, et al. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol. 2017;128(9):1774-1809. https://doi.org/10.1016/j.clinph.2017.06.001

(152) Potok W, Bächinger M, van der Groen O, Cretu AL, Wenderoth N. Transcranial Random Noise Stimulation Acutely Lowers the Response Threshold of Human Motor Circuits. J Neurosci. 2021;41(17):3842-53. https://doi.org/10.1523/jneurosci.2961-20.2021

(153) Laczó B, Antal A, Rothkegel H, Paulus W. Increasing human leg motor cortex excitability by transcranial high frequency random noise stimulation. Restor Neurol Neurosci. 2014;32(3):403-10. https://doi.org/10.3233/rnn-130367

(154) Hoshi H, Kojima S, Otsuru N, Onishi H. Effects of transcranial random noise stimulation timing on corticospinal excitability and motor function. Behav Brain Res. 2021;414:113479. https://doi.org/10.1016/j.bbr.2021.113479

(155) Jooss A, Haberbosch L, Köhn A, Rönnefarth M, Bathe-Peters R, Kozarzewski L, et al. Motor Task-Dependent Dissociated Effects of Transcranial Random Noise Stimulation in a Finger-Tapping Task Versus a Go/No-Go Task on Corticospinal Excitability and Task Performance. Front Neurosci. 2019;13:161. https://doi.org/10.3389/fnins.2019.00161

(156) Bieck SM, Artemenko C, Moeller K, Klein E. Low to No Effect: Application of tRNS During Two-Digit Addition. Front Neurosci. 2018;12:176. https://doi.org/10.3389%2Ffnins.2018.00176

(157) Dissanayaka T, Zoghi M, Farrell M, Egan GF, Jaberzadeh S. Does transcranial electrical stimulation enhance corticospinal excitability of the motor cortex in healthy individuals? A systematic review and meta-analysis. Eur J Neurosci. 2017;46(4):1968-90. https://doi.org/10.1111/ejn.13640

(158) di Biase L, Falato E, Di Lazzaro V. Transcranial Focused Ultrasound (tFUS) and Transcranial Unfocused Ultrasound (tUS) Neuromodulation: From Theoretical Principles to Stimulation Practices. Front. Neurol. 2019;10:549. https://doi.org/10.3389%2Ffneur.2019.00549

(159) Plaksin M, Shoham S, Kimmel E. Intramembrane cavitation as a predictive bio-piezoelectric mechanism for ultrasonic brain stimulation. Phys Rev X. 2014;4(1):011004. https://doi.org/10.1103/PhysRevX.4.011004

(160) Hirata H, Iida, A. Zebrafish, Medaka, and Other Small Fishes: New Model Animals in Biology, Medicine, and Beyond. Singapure: Springer; 2018.

(161) Gambacorta R, Iannario M. Measuring Job Satisfaction with CUB Models. Labour. 2013;27(2):198-224. https://doi.org/10.1111/labr.12008

(162) Dallapiazza RF, Timbie KF, Holmberg S, Gatesman J, Lopes MB, Price RJ, et al. Noninvasive neuromodulation and thalamic mapping with low-intensity focused ultrasound. J Neurosurg. 2018;128(3):875-84. https://doi.org/10.3171/2016.11.jns16976

(163) Lee W, Chung YA, Jung Y, Song IU, Yoo SS. Simultaneous acoustic stimulation of human primary and secondary somatosensory cortices using transcranial focused ultrasound. BMC Neurosci. 2016;17(1):68. https://doi.org/10.1186/s12868-016-0303-6

(164) Leo Ai, Mueller JK, Grant A, Eryaman Y, Wynn Legon. Transcranial focused ultrasound for BOLD fMRI signal modulation in humans. Annu Int Conf IEEE Eng Med Biol Soc. 2016;2016:1758-61. https://doi.org/10.1109/embc.2016.7591057

(165) Hameroff S, Trakas M, Duffield C, Annabi E, Gerace MB, Boyle P, et al. Transcranial ultrasound (TUS) effects on mental states: a pilot study. Brain Stimul. 2013;6(3):409-15. https://doi.org/10.1016/j.brs.2012.05.002

(166) Monti MM, Schnakers C, Korb AS, Bystritsky A, Vespa PM. Non-Invasive Ultrasonic Thalamic Stimulation in Disorders of Consciousness after Severe Brain Injury: A First-in-Man Report. Brain Stimul. 2016;9(6):940-1. https://doi.org/10.1016/j.brs.2016.07.008

(167) Jeong H, Im JJ, Park JS, Na SH, Lee W, Yoo SS, et al. A pilot clinical study of low-intensity transcranial focused ultrasound in Alzheimer's disease. Ultrasonography. 2021;40(4):512-19. https://doi.org/10.14366%2Fusg.20138

(168) Lipsman N, Meng Y, Bethune AJ, Huang Y, Lam B, Masellis M, et al. Blood-brain barrier opening in Alzheimer's disease using MR-guided focused ultrasound. Nat Commun. 2018;9(1):2336. https://doi.org/10.1038/s41467-018-04529-6

(169) Heiskanen V, Hamblin MR. Photobiomodulation: lasers vs. light emitting diodes?. Photochem Photobiol Sci. 2018;17(8):1003-17. Erratum in: Photochem Photobiol Sci. 2019;18(1):259. https://doi.org/10.1039/c8pp90049c

(170) Hamblin MR. Shining light on the head: Photobiomodulation for brain disorders. BBA Clin. 2016;6:113-24. https://doi.org/10.1016%2Fj.bbacli.2016.09.002

(171) Jagdeo JR, Adams LE, Brody NI, Siegel DM. Transcranial red and near infrared light transmission in a cadaveric model. PLoS One. 2012;7(10):e47460. https://doi.org/10.1371/journal.pone.0047460

(172) Askalsky P, Iosifescu DV. Transcranial Photobiomodulation For The Management Of Depression: Current Perspectives. Neuropsychiatr Dis Treat. 2019;15:3255-72. https://doi.org/10.2147/ndt.s188906

(173) Paolillo FR, Luccas GAA, Parizotto NA, Paolillo AR, Castro Neto JC, Bagnato VS. The effects of transcranial laser photobiomodulation and neuromuscular electrical stimulation in the treatment of post-stroke dysfunctions. J Biophotonics. 2023;16(4):e202200260. https://doi.org/10.1002/jbio.202200260

(174) Helm S, Shirsat N, Calodney A, Abd-Elsayed A, Kloth D, Soin A, et al. Peripheral Nerve Stimulation for Chronic Pain: A Systematic Review of Effectiveness and Safety. Pain Ther. 2021;10(2):985-1002. https://doi.org/10.1007/s40122-021-00306-4

(175) Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405(6785):458-62. https://doi.org/10.1038/35013070

(176) Kim B, Lohman E, Yim J. Acupuncture-like Transcutaneous Electrical Nerve Stimulation for Pain, Function, and Biochemical Inflammation After Total Knee Arthroplasty. Altern Ther Health Med. 2021;27(1):28-34. Cited: PMID: 32088676.

(177) Jenkins EPW, Finch A, Gerigk M, Triantis IF, Watts C, Malliaras GG. Electrotherapies for Glioblastoma. Adv Sci (Weinh). 2021;8(18):e2100978. https://doi.org/10.1002/advs.202100978

(178) Adair D, Truong D, Esmaeilpour Z, Gebodh N, Borges H, Ho L, et al. Electrical stimulation of cranial nerves in cognition and disease. Brain Stimul. 2020;13(3):717-50. https://doi.org/10.1016/j.brs.2020.02.019

(179) Koenig J, Parzer P, Haigis N, Liebemann J, Jung T, Resch F, et al. Effects of acute transcutaneous vagus nerve stimulation on emotion recognition in adolescent depression. Psychol Med. 2021;51(3):511-20. https://doi.org/10.1017/s0033291719003490

(180) Chipchase LS, Schabrun SM, Hodges PW. Peripheral electrical stimulation to induce cortical plasticity: a systematic review of stimulus parameters. Clin Neurophysiol. 2011;122(3):456-63. https://doi.org/10.1016/j.clinph.2010.07.025

(181) Chipchase LS, Schabrun SM, Hodges PW. Corticospinal excitability is dependent on the parameters of peripheral electric stimulation: a preliminary study. Arch Phys Med Rehabil. 2011;92(9):1423-30. https://doi.org/10.1016/j.apmr.2011.01.011

(182) Veldman MP, Maffiuletti NA, Hallett M, Zijdewind I, Hortobágyi T. Direct and crossed effects of somatosensory stimulation on neuronal excitability and motor performance in humans. Neurosci Biobehav Rev. 2014;47:22-35. https://doi.org/10.1016/j.neubiorev.2014.07.013

(183) Rauck RL, Cohen SP, Gilmore CA, North JM, Kapural L, Zang RH, et al. Treatment of post-amputation pain with peripheral nerve stimulation. Neuromodulation. 2014;17(2):188-97. https://doi.org/10.1111/ner.12102

(184) Brito FX, Luz-Santos C, Camatti JR, Fonseca RJS, Suzarth G, Moraes LMC, et al. Electroacupuncture modulates cortical excitability in a manner dependent on the parameters used. Acupunct Med. 2022;40(2):178-85. https://doi.org/10.1177/09645284211057560

(185) Papuć E, Rejdak K. The role of neurostimulation in the treatment of neuropathic pain. Ann Agric Environ Med. 2013;20(Spec 1):14-7. Cited: PMID: 25000835.

(186) Peuker ET, Filler TJ. The nerve supply of the human auricle. Clin Anat. 2002;15(1):35-7. https://doi.org/10.1002/ca.1089

(187) Badran BW, Yu AB, Adair D, Mappin G, DeVries WH, Jenkins DD, et al. Laboratory Administration of Transcutaneous Auricular Vagus Nerve Stimulation (taVNS): Technique, Targeting, and Considerations. J Vis Exp. 2019;(143):e58984. https://doi.org/10.3791/58984

(188) Kreuzer PM, Landgrebe M, Husser O, Resch M, Schecklmann M, Geisreiter F, et al. Transcutaneous vagus nerve stimulation: retrospective assessment of cardiac safety in a pilot study. Front Psychiatry. 2012;3:70. https://doi.org/10.3389/fpsyt.2012.00070

(189) Kreuzer PM, Landgrebe M, Resch M, Husser O, Schecklmann M, Geisreiter F, et al. Feasibility, safety and efficacy of transcutaneous vagus nerve stimulation in chronic tinnitus: an open pilot study. Brain Stimul. 2014;7(5):740-7. https://doi.org/10.1016/j.brs.2014.05.003

(190) Badran BW, Dowdle LT, Mithoefer OJ, LaBate NT, Coatsworth J, Brown JC, et al. Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: A concurrent taVNS/fMRI study and review. Brain Stimul. 2018;11(3):492-500. https://doi.org/10.1016/j.brs.2017.12.009

(191) Wu C, Liu P, Fu H, Chen W, Cui S, Lu L, et al. Transcutaneous auricular vagus nerve stimulation in treating major depressive disorder: A systematic review and meta-analysis. Medicine. 2018;97(52):e13845. https://doi.org/10.1097/md.0000000000013845

(192) Shiozawa P, Silva ME, Carvalho TC, Cordeiro Q, Brunoni AR, Fregni F. Transcutaneous vagus and trigeminal nerve stimulation for neuropsychiatric disorders: a systematic review. Arq Neuropsiquiatr. 2014;72(7):542-7. https://doi.org/10.1590/0004-282x20140061

(193) Gao Y, Zhu Y, Lu X, Wang N, Zhu S, Gong J, et al. Vagus nerve stimulation paired with rehabilitation for motor function, mental health and activities of daily living after stroke: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2023;94(4):257-66. https://doi.org/10.1136/jnnp-2022-329275

(194) Straube A, Ellrich J, Eren O, Blum B, Ruscheweyh R. Treatment of chronic migraine with transcutaneous stimulation of the auricular branch of the vagal nerve (auricular t-VNS): a randomized, monocentric clinical trial. J Headache Pain. 2015;16:543. https://doi.org/10.1186/s10194-015-0543-3

(195) Liu A, Rong P, Gong L, Song L, Wang X, Li L, et al. Efficacy and Safety of Treatment with Transcutaneous Vagus Nerve Stimulation in 17 Patients with Refractory Epilepsy Evaluated by Electroencephalogram, Seizure Frequency, and Quality of Life. Med Sci Monit. 2018;24:CLR8439-8448. https://doi.org/10.12659/msm.910689

(196) Ylikoski J, Markkanen M, Pirvola U, Lehtimäki JA, Ylikoski M, Jing Z, et al. Stress and Tinnitus; Transcutaneous Auricular Vagal Nerve Stimulation Attenuates Tinnitus-Triggered Stress Reaction. Front Psychol. 2020;11:570196. https://doi.org/10.3389/fpsyg.2020.570196

(197) Badran BW, Jenkins DD, Cook D, Thompson S, Dancy M, DeVries WH, et al. Transcutaneous Auricular Vagus Nerve Stimulation-Paired Rehabilitation for Oromotor Feeding Problems in Newborns: An Open-Label Pilot Study. Front Hum Neurosci. 2020;14:77. https://doi.org/10.3389/fnhum.2020.00077

(198) Colzato LS, Elmers J, Beste C, Hommel B. A Prospect to Ameliorate Affective Symptoms and to Enhance Cognition in Long COVID Using Auricular Transcutaneous Vagus Nerve Stimulation. J Clin Med. 2023;12(3):1198. https://doi.org/10.3390/jcm12031198

(199) Badran BW, Mithoefer OJ, Summer CE, LaBate NT, Glusman CE, Badran AW, et al. Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate. Brain Stimul. 2018;11(4):699-708. https://doi.org/10.1016/j.brs.2018.04.004

(200) Ridgewell C, Heaton KJ, Hildebrandt A, Couse J, Leeder T, Neumeier WH. The effects of transcutaneous auricular vagal nerve stimulation on cognition in healthy individuals: A meta-analysis. Neuropsychology. 2021;35(4):352-65. https://doi.org/10.1037/neu0000735

(201) Gianlorenco ACL, Melo PS, Marduy A, Kim AY, Kim CK, Choi H, et al. Electroencephalographic Patterns in taVNS: A Systematic Review. Biomedicines. 2022;10(9):2208. https://doi.org/10.3390/biomedicines10092208

(202) Beaulieu LD, Schneider C. Effects of repetitive peripheral magnetic stimulation on normal or impaired motor control. A review. Neurophysiol Clin. 2013;43(4):251-60. https://doi.org/10.1016/j.neucli.2013.05.003

(203) Deng ZD, Lisanby SH, Peterchev AV. Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul. 2013;6(1):1-13. https://doi.org/10.1016/j.brs.2012.02.005

(204) Smania N, Corato E, Fiaschi A, Pietropolis P, Aglioti SM, Tinazzi. Repetitive magnetic stimulation A novel therapeutic approach for myofascial pain syndrome. J Neurology. 2005;252:307-14. https://doi.org/10.1007/s00415-005-0642-1

(205) Khedr EM, Ahmed MA, Alkady EAM, Mostafa MG, Said HG. Therapeutic effects of peripheral magnetic stimulation on traumatic brachial plexopathy: clinical and neurophysiological study. Neurophysiol Clin. 2012;42(3):111-8. https://doi.org/10.1016/j.neucli.2011.11.003

(206) Leung A, Fallah A, Shukla S. Transcutaneous magnetic stimulation (TMS) in alleviating post-traumatic peripheral neuropathic pain States: a case series. Pain Med. 2014;15(7):1196-9. https://doi.org/10.1111/pme.12426

(207) Knotkova H, Hamani C, Sivanesan E, Le Beuffe MFE, Moon JY, Cohen SP, et al. Neuromodulation for chronic pain. Lancet. 2021;397(10289):2111-24. https://doi.org/10.1016/s0140-6736(21)00794-7

(208) Krewer C, Hartl S, Müller F, Koenig E. Effects of repetitive peripheral magnetic stimulation on upper-limb spasticity and impairment in patients with spastic hemiparesis: a randomized, double-blind, sham-controlled study. Arch Phys Med Rehabil. 2014;95(6):1039-47. https://doi.org/10.1016/j.apmr.2014.02.003

(209) Baek J, Park N, Lee B, Jee S, Yang S, Kang S. Effects of Repetitive Peripheral Magnetic Stimulation Over Vastus Lateralis in Patients After Hip Replacement Surgery. Ann Rehabil Med. 2018;42(1):67-75. https://doi.org/10.5535/arm.2018.42.1.67

(210) Hwang NK, Park JS, Choi JB, Jung YJ. Effect of Peripheral Magnetic Stimulation for Dysphagia Rehabilitation: A Systematic Review. Nutrients. 2022;14(17):3514. https://doi.org/10.3390/nu14173514

(211) Shin J, Yang E, Cho K, Barcenas CL, Kim WJ, Min Y, et al. Clinical application of repetitive transcranial magnetic stimulation in stroke rehabilitation. Neural Regen Res. 2012;7(8):627-34. https://doi.org/10.3969/j.issn.1673-5374.2012.08.011

(212) Steuer I, Guertin PA. Central pattern generators in the brainstem and spinal cord: an overview of basic principles, similarities and differences. Rev Neurosci. 2019;30(2):107-64. https://doi.org/10.1515/revneuro-2017-0102

(213) Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358(13):1327-35. https://doi.org/10.1056/nejmoa070447

(214) Sharshar T, Ross ET, Hopkinson NS, Porcher R, Nickol AH, Jonville S, et al. Depression of diaphragm motor cortex excitability during mechanical ventilation. J Appl Physiol. 2004;97(1):3-10. https://doi.org/10.1152/japplphysiol.01099.2003

(215) Rizzo V, Terranova C, Crupi D, Sant'angelo A, Girlanda P, Quartarone A. Increased transcranial direct current stimulation after effects during concurrent peripheral electrical nerve stimulation. Brain Stimul. 2014;7(1):113-21. https://doi.org/10.1016/j.brs.2013.10.002

(216) Carvalho P, Goulardins JB, Sousa DMN, Barbosa CMDS, Caetano TCC, Santos LM, et al. Noninvasive Neuromodulation Techniques in Difficult Tracheostomy Weaning of Patients With Spinal Cord Injury: Report of Two Cases. Chest. 2021;159(5):e299-e302. https://doi.org/10.1016/j.chest.2020.11.065

(217) Poulard T, Dres M, Niérat MC, Rivals I, Hogrel JY, Similowski T, et al. Ultrafast ultrasound coupled with cervical magnetic stimulation for non-invasive and non-volitional assessment of diaphragm contractility. J Physiol. 2020;598(24):5627-38. https://doi.org/10.1113/jp280457

(218) American Speech-Language-Hearing Association (ASHA). Telepractice [Internet]. Available from: www.asha.org/Practice-Portal/Professional-Issues/Telepractice/

(219) Stemmer B, Whitaker HA. Handbook of the Neuroscience of Language [Internet]. Academic Press; 2008. Available from: https://almoufakker.files.wordpress.com/2018/12/brigitte-stemmer-and-harry-whitaker-handbook-of-the-neuroscience-of-language.pdf

(220) Cappa SF. The neural basis of aphasia rehabilitation: evidence from neuroimaging and neurostimulation. Neuropsychol Rehabil. 2011;21(5):742-54. https://doi.org/10.1080/09602011.2011.614724

(221) Fridriksson J, Richardson JD, Fillmore P, Cai B. Left hemisphere plasticity and aphasia recovery. Neuroimage. 2012;60(2):854-63. https://doi.org/10.1016/j.neuroimage.2011.12.057

(222) REhabilitation and recovery of peopLE with Aphasia after StrokE (RELEASE) Collaborators. Dosage, Intensity, and Frequency of Language Therapy for Aphasia: A Systematic Review-Based, Individual Participant Data Network Meta-Analysis. Stroke. 2022;53(3):956-67. https://doi.org/10.1161/strokeaha.121.035216

(223) Galletta EE, Conner P, Vogel-Eyny A, Marangolo P. Use of tDCS in Aphasia Rehabilitation: A Systematic Review of the Behavioral Interventions Implemented With Noninvasive Brain Stimulation for Language Recovery. Am J Speech Lang Pathol. 2016;25(4S):S854-S867. https://doi.org/10.1044/2016_ajslp-15-0133

(224) Sandars M, Cloutman L, Woollams AM. Taking Sides: An Integrative Review of the Impact of Laterality and Polarity on Efficacy of Therapeutic Transcranial Direct Current Stimulation for Anomia in Chronic Poststroke Aphasia. Neural Plast. 2016;2016:8428256. https://doi.org/10.1155/2016/8428256

(225) Elsner B, Kugler J, Pohl M, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving aphasia in adults with aphasia after stroke. Cochrane Database Syst Rev. 2019;5(5):CD009760. https://doi.org/10.1002/14651858.cd009760.pub4

(226) Mendoza JA, Silva FA, Pachón MY, Rueda LC, Lopez Romero LA, Pérez M. Repetitive Transcranial Magnetic Stimulation in Aphasia and Communication Impairment in Post-Stroke: Systematic Review of Literature. J Neurol Transl Neurosci [Internet]. 2016;4(3):1070. Available from: https://www.jscimedcentral.com/jounal-article-info/Journal-of-Neurology-and-Translational-Neuroscience/Repetitive-Transcranial--Magnetic-Stimulation-in-Aphasia--and-Communication-Impairment--in-Post-Stroke%3A-Systematic--Review-of-Literature-3465#section-34455

(227) Lefaucheur JP, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol. 2017;128(1):56-92. https://doi.org/10.1016/j.clinph.2016.10.087

(228) Zhao J, Li Y, Zhang X, Yuan Y, Cheng Y, Hou J, et al. Alteration of network connectivity in stroke patients with apraxia of speech after tDCS: A randomized controlled study. Front Neurol. 2022;13:969786. https://doi.org/10.3389/fneur.2022.969786

(229) Themistocleous C, Webster K, Tsapkini K. Effects of tDCS on Sound Duration in Patients with Apraxia of Speech in Primary Progressive Aphasia. Brain Sci. 2021;11(3):335. https://doi.org/10.3390/brainsci11030335

(230) Buch ER, Santarnecchi E, Antal A, Born J, Celnik PA, Classen J, et al. Effects of tDCS on motor learning and memory formation: A consensus and critical position paper. Clin Neurophysiol. 2017;128(4):589-603. https://doi.org/10.1016/j.clinph.2017.01.004

(231) Marangolo P, Marinelli CV, Bonifazi S, Fiori V, Ceravolo MG, Provinciali L, et al. Electrical stimulation over the left inferior frontal gyrus (IFG) determines long-term effects in the recovery of speech apraxia in three chronic aphasics. Behav Brain Res. 2011;225(2):498-504. https://doi.org/10.1016/j.bbr.2011.08.008

(232) Marangolo P, Fiori V, Cipollari S, Campana S, Razzano C, Di Paola M, et al. Bihemispheric stimulation over left and right inferior frontal region enhances recovery from apraxia of speech in chronic aphasia. Eur J Neurosci. 2013;38(9):3370-7. https://doi.org/10.1111/ejn.12332

(233) Wong MN, Baig FN, Chan YK, Ng ML, Zhu FF, Kwan JSK. Transcranial direct current stimulation over the primary motor cortex improves speech production in post-stroke dysarthric speakers: A randomized pilot study. PLoS One. 2022;17(10):e0275779. https://doi.org/10.1371/journal.pone.0275779

(234) França C, Andrade DC, Teixeira MJ, Galhardoni R, Silva V, Barbosa ER, et al. Effects of cerebellar neuromodulation in movement disorders: A systematic review. Brain Stimul. 2018;11(2):249-60. https://doi.org/10.1016/j.brs.2017.11.015

(235) Murdoch BE, Ng ML, Barwood CH. Treatment of articulatory dysfunction in Parkinson's disease using repetitive transcranial magnetic stimulation. Eur J Neurol. 2012;19(2):340-7. https://doi.org/10.1111/j.1468-1331.2011.03524.x Retraction in: Murdoch BE, Ng ML, Barwood CH. Eur J Neurol. 2013;20(11):1497. https://doi.org/10.1111/ene.12276

(236) Khedr EM, Abdel-Fadeil MR, El-Khilli F, Ibrahim MQ. Impaired corticolingual pathways in patients with or without dysarthria after acute monohemispheric stroke. Neurophysiol Clin. 2005;35(2-3):73-80. https://doi.org/10.1016/j.neucli.2005.03.003

(237) Balzan P, Tattersall C, Palmer R. Non-invasive brain stimulation for treating neurogenic dysarthria: A systematic review. Ann Phys Rehabil Med. 2022;65(5):101580. https://doi.org/10.1016/j.rehab.2021.101580

(238) Murdoch BE, Barwood CH. Non-invasive brain stimulation: a new frontier in the treatment of neurogenic speech-language disorders. Int J Speech Lang Pathol. 2013;15(3):234-44. https://doi.org/10.3109/17549507.2012.745605

(239) Razza LB, Afonso Dos Santos L, Borrione L, Bellini H, Branco LC, Cretaz E, et al. Appraising the effectiveness of electrical and magnetic brain stimulation techniques in acute major depressive episodes: an umbrella review of meta-analyses of randomized controlled trials. Braz J Psychiatry. 2021;43(5):514-24. https://doi.org/10.1590/1516-4446-2020-1169

(240) Kennedy SH, Lam RW, McIntyre RS, Tourjman SV, Bhat V, Blier P, et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 Clinical Guidelines for the Management of Adults with Major Depressive Disorder: Section 3. Pharmacological Treatments. Can J Psychiatry. 2016;61(9):540-60. https://doi.org/10.1177/0706743716659417

(241) Rush AJ, Trivedi MH, Wisniewski SR, Stewart JW, Nierenberg AA, Thase ME, et al. Bupropion-SR, sertraline, or venlafaxine-XR after failure of SSRIs for depression. N Engl J Med. 2006;354(12):1231-42. https://doi.org/10.1056/nejmoa052963

(242) Keller MB, McCullough JP, Klein DN, Arnow B, Dunner DL, Gelenberg AJ, et al. A comparison of nefazodone, the cognitive behavioral-analysis system of psychotherapy, and their combination for the treatment of chronic depression. N Engl J Med. 2000;342(20):1462-70. https://doi.org/10.1056/nejm200005183422001

(243) Baeken C, Brem AK, Arns M, Brunoni AR, Filipčić I, Ganho-Ávila, et al. Repetitive transcranial magnetic stimulation treatment for depressive disorders: current knowledge and future directions. Curr Opin Psychiatry. 2019;32(5):409-15. https://doi.org/10.1097/yco.0000000000000533

(244) Brunoni AR, Teng CT, Correa C, Imamura M, Brasil-Neto JP, Boechat R, et al. Neuromodulation approaches for the treatment of major depression: challenges and recommendations from a working group meeting. Arq Neuropsiquiatr. 2010;68(3):433-51. https://doi.org/10.1590/s0004-282x2010000300021

(245) Charlson F, van Ommeren M, Flaxman A, Cornett J, Whiteford H, Saxena S. New WHO prevalence estimates of mental disorders in conflict settings: a systematic review and meta-analysis. Lancet. 2019;394(10194):240-48. https://doi.org/10.1016/s0140-6736(19)30934-1

(246) Mulder RT. ICD-11 Personality Disorders: Utility and Implications of the New Model. Front Psychiatry. 2021;12:655548. https://doi.org/10.3389/fpsyt.2021.655548

(247) American Psychiatric Association (APA). DSM-5: Manual Diagnóstico e Estatístico de Transtornos Mentais. Porto Alegre: Artmed; 2014.

(248) Rush AJ. The varied clinical presentations of major depressive disorder. J Clin Psychiatry. 2007;68(suppl 8):4-10. Cited: PMID: 17640152

(249) Hyde J, Carr H, Kelley N, Seneviratne R, Reed C, Parlatini V, et al. Efficacy of neurostimulation across mental disorders: Systematic review and meta-analysis of 208 randomized controlled trials. Molecular Psychiatry. 2022;27(6):2709-19. https://doi.org/10.1038/s41380-022-01524-8

(250) Sá KN, Baptista RF, Shirahige L, Razza LB, Nogueira M, Coura MHF, et al. Evidence-based umbrella review of non-invasive brain stimulation in anxiety disorders. Eur J Psychiatry. 2023;37(3):167-81. https://doi.org/10.1016/j.ejpsy.2023.01.001

(251) Cox J, Thakur B, Alvarado L, Shokar N, Thompson PM, Dwivedi AK. Repetitive transcranial magnetic stimulation for generalized anxiety and panic disorders: A systematic review and meta-analysis. Ann Clin Psychiatry. 2022;34(2):e2-e24. https://doi.org/10.12788/acp.0050

(252) Khan S, Liu J, Xue M. Transmission of SARS-CoV-2, Required Developments in Research and Associated Public Health Concerns. Front Med. 2020;7:310. https://doi.org/10.3389/fmed.2020.00310

(253) Fitzsimmons SMDD, van der Werf YD, van Campen AD, Arns M, Sack AT, Hoogendoorn AW, et al. Repetitive transcranial magnetic stimulation for obsessive-compulsive disorder: A systematic review and pairwise/network meta-analysis. J Affect Disord. 2022;302:302-312. https://doi.org/10.1016/j.jad.2022.01.048

(254) Li H, Wang J, Li C, Xiao Z. Repetitive transcranial magnetic stimulation (rTMS) for panic disorder in adults. Cochrane Database Syst Rev. 2014;(9):CD009083. https://doi.org/10.1002%2F14651858.CD009083.pub2

(255) American Psychiatric Association. Neurocognitive disorders – supplement. Updated excerpts for delirium codes major and mild neurocognitive disorders. Washington: American Psychiatric Association Publishing; 2022.

(256) Chen J, Qin J, He Q, Zou Z. A Meta-Analysis of Transcranial Direct Current Stimulation on Substance and Food Craving: What Effect Do Modulators Have?. Front Psychiatry. 2020;11:598. https://doi.org/10.3389/fpsyt.2020.00598

(257) Song S, Zilverstand A, Gui W, Pan X, Zhou X. Reducing craving and consumption in individuals with drug addiction, obesity or overeating through neuromodulation intervention: a systematic review and meta-analysis of its follow-up effects. Addiction. 2022;117(5):1242-55. https://doi.org/10.1111/add.15686

(258) Kang N, Kim RK, Kim HJ. Effects of transcranial direct current stimulation on symptoms of nicotine dependence: A systematic review and meta-analysis. Addict Behav. 2019;96:133-139. https://doi.org/10.1016/j.addbeh.2019.05.006

(259) Tseng PT, Zeng BS, Hung CM, Liang CS, Stubbs B, Carvalho AF, et al. Assessment of Noninvasive Brain Stimulation Interventions for Negative Symptoms of Schizophrenia: A Systematic Review and Network Meta-analysis. JAMA Psychiatry. 2022;79(8):770-9. https://doi.org/10.1001/jamapsychiatry.2022.1513

(260) Silva RCB. Schizophrenia: a review. Psicol USP. 2006;17(4):263-85. https://doi.org/10.1590/S0103-65642006000400014

(261) Kennedy NI, Lee WH, Frangou S. Efficacy of non-invasive brain stimulation on the symptom dimensions of schizophrenia: A meta-analysis of randomized controlled trials. Eur Psychiatry. 2018;49:69-77. https://doi.org/10.1016/j.eurpsy.2017.12.025

(262) Pelletier R, Higgins J, Bourbonnais D. Addressing Neuroplastic Changes in Distributed Areas of the Nervous System Associated With Chronic Musculoskeletal Disorders. Phys Ther. 2015;95(11):1582-91. https://doi.org/10.2522/ptj.20140575

(263) Caumo W, Deitos A, Carvalho S, Leite J, Carvalho F, Dussán-Sarria JA, et al. Motor Cortex Excitability and BDNF Levels in Chronic Musculoskeletal Pain According to Structural Pathology. Front Hum Neurosci. 2016;10:357. https://doi.org/10.3389/fnhum.2016.00357

(264) Rodriguez KM, Palmieri-Smith RM, Krishnan C. How does anterior cruciate ligament reconstruction affect the functioning of the brain and spinal cord? A systematic review with meta-analysis. J Sport Health Sci. 2021;10(2):172-81. https://doi.org/10.1016/j.jshs.2020.07.005

(265) Harkey MS, Gribble PA, Pietrosimone BG. Disinhibitory interventions and voluntary quadriceps activation: a systematic review. J Athl Train. 2014;49(3):411-21. https://doi.org/10.4085/1062-6050-49.1.04

(266) Tanwar S, Mattoo B, Kumar U, Bhatia R. Repetitive transcranial magnetic stimulation of the prefrontal cortex for fibromyalgia syndrome: a randomised controlled trial with 6-months follow up. Adv Rheumatol. 2020;60(1):34. https://doi.org/10.1186/s42358-020-00135-7

(267) Silva-Filho E, Okano AH, Morya E, Albuquerque J, Cacho E, Unal G, et al. Neuromodulation treats Chikungunya arthralgia: a randomized controlled trial. Sci Rep. 2018;8(1):16010. https://doi.org/10.1038/s41598-018-34514-4

(268) Silva TSF, Galdino MKC, Andrade SMMS, Lucena LBS, Aranha RELB, Rodrigues ETA. Use of non-invasive neuromodulation in the treatment of pain in temporomandibular dysfunction: preliminary study. Braz J Pain. 2019;2(2):147-54. http://dx.doi.org/10.5935/2595-0118.20190027

(269) Fidalgo-Martin I, Ramos-Álvarez JJ, Murias-Lozano R, Rodríguez-López ES. Effects of percutaneous neuromodulation in neuromusculoskeletal pathologies: A systematic review. Medicine. 2022;101(41):e31016. https://doi.org/10.1097/md.0000000000031016

(270) Arias-Buría JL, Cleland JA, El Bachiri YR, Plaza-Manzano G, Fernández-de-Las-Peñas C. Ultrasound-Guided Percutaneous Electrical Nerve Stimulation of the Radial Nerve for a Patient With Lateral Elbow Pain: A Case Report With a 2-Year Follow-up. J Orthop Sports Phys Ther. 2019;49(5):347-54. https://doi.org/10.2519/jospt.2019.8570

(271) Misse RG, Borges IBP, Santos AM, Gupta L, Shinjo SK. Effect of exercise training on fatigue and pain in patients with systemic autoimmune myopathies: A systematic review. Autoimmun Rev. 2021;20(10):102897. https://doi.org/10.1016/j.autrev.2021.102897

(272) Goërtz YMJ, Braamse AMJ, Spruit MA, Janssen DJA, Ebadi Z, Van Herck M, et al. Fatigue in patients with chronic disease: results from the population-based Lifelines Cohort Study. Sci Rep. 2021;11(1):20977. https://doi.org/10.1038/s41598-021-00337-z

(273) Liu XG. Normalization of Neuroinflammation: A New Strategy for Treatment of Persistent Pain and Memory/Emotional Deficits in Chronic Pain. J Inflamm Res. 2022;15:5201-33. https://doi.org/10.2147/jir.s379093

(274) Nijs J, Torres-Cueco R, van Wilgen CP, Girbes EL, Struyf F, Roussel N, et al. Applying modern pain neuroscience in clinical practice: criteria for the classification of central sensitization pain. Pain Physician. 2014;17(5):447-57. Cited: PMID: 25247901.

(275) Suchting R, Teixeira AL, Ahn B, Colpo GD, Park J, Ahn H. Changes in Brain-derived Neurotrophic Factor From Active and Sham Transcranial Direct Current Stimulation in Older Adults With Knee Osteoarthritis. Clin J Pain. 2021;37(12):898-903. https://doi.org/10.1097/ajp.0000000000000987

(276) Lloyd DM, Wittkopf PG, Arendsen LJ, Jones AKP. Is Transcranial Direct Current Stimulation (tDCS) Effective for the Treatment of Pain in Fibromyalgia? A Systematic Review and Meta-Analysis. J Pain. 2020;21(11-12):1085-100. https://doi.org/10.1016/j.jpain.2020.01.003

(277) Pinto ACPN, Piva SR, Vieira AGS, Gomes SGCN, Rocha AP, Tavares DRB, et al. Transcranial direct current stimulation for fatigue in patients with Sjogren's syndrome: A randomized, double-blind pilot study. Brain Stimul. 2021;14(1):141-51. https://doi.org/10.1016/j.brs.2020.12.004

(278) Misse RG, Santos AM, Baptista AF, Shinjo SK. Transcranial direct current stimulation is safe and relieves post-herpetic neuralgia in patient with dermatomyositis: A case report. Open J Rheumatol Autoimmun Dis. 2022;12(4):114-18. https://doi.org/10.4236/ojra.2022.124012

(279) Sousa LFA, Missé RG, Santos LM, Tanaka C, Greve JMA, Baptista AF, Shinjo SK. Transcranial direct current stimulation is safe and effective in autoimmune myopathies: a randomised, double-blind, sham-controlled trial. Clin Exp Rheumatol. 2023;41(2):221-29. https://doi.org/10.55563/clinexprheumatol/qjm9hb

(280) Shiozawa P, Silva ME, Raza R, Uchida RR, Cordeiro Q, Fregni F, et al. Safety of repeated transcranial direct current stimulation in impaired skin: a case report. J ECT. 2013;29(2):147-8. https://doi.org/10.1097/yct.0b013e318279c1a1

(281) Feigin VL, Norrving B, Mensah GA. Global Burden of Stroke. Circ Res. 2017;120(3):439-48. https://doi.org/10.1161/circresaha.116.308413

(282) Cortes M, Black-Schaffer RM, Edwards DJ. Transcranial magnetic stimulation as an investigative tool for motor dysfunction and recovery in stroke: an overview for neurorehabilitation clinicians. Neuromodulation. 2012;15(4):316-25. https://doi.org/10.1111/j.1525-1403.2012.00459.x

(283) Shen QR, Hu MT, Feng W, Li KP, Wang W. Narrative Review of Noninvasive Brain Stimulation in Stroke Rehabilitation. Med Sci Monit. 2022;28:e938298. https://doi.org/10.12659/msm.938298

(284) Boato F, Guan X, Zhu Y, Ryu Y, Voutounou M, Rynne C, et al. Activation of MAP2K signaling by genetic engineering or HF-rTMS promotes corticospinal axon sprouting and functional regeneration. Sci Transl Med. 2023;15(677):eabq6885. https://doi.org/10.1126/scitranslmed.abq6885

(285) Turnbull C, Boomsma A, Milte R, Stanton TR, Hordacre B. Safety and Adverse Events following Non-invasive Electrical Brain Stimulation in Stroke: A Systematic Review. Top Stroke Rehabil. 2023;30(4):355-67. https://doi.org/10.1080/10749357.2022.2058294

(286) Kakuda W, Abo M, Sasanuma J, Shimizu M, Okamoto T, Kimura C, et al. Combination Protocol of Low-Frequency rTMS and Intensive Occupational Therapy for Post-stroke Upper Limb Hemiparesis: a 6-year Experience of More Than 1700 Japanese Patients. Transl Stroke Res. 2016;7(3):172-9. https://doi.org/10.1007/s12975-016-0456-8

(287) O'Brien AT, Bertolucci F, Torrealba-Acosta G, Huerta R, Fregni F, Thibaut A. Non-invasive brain stimulation for fine motor improvement after stroke: a meta-analysis. Eur J Neurol. 2018;25(8):1017-26. https://doi.org/10.1111/ene.13643

(288) Zumbansen A, Black SE, Chen JL, J Edwards D, Hartmann A, Heiss WD, et al. Non-invasive brain stimulation as add-on therapy for subacute post-stroke aphasia: a randomized trial (NORTHSTAR). Eur Stroke J. 2020;5(4):402-13. https://doi.org/10.1177/2396987320934935

(289) Wang T, Dong L, Cong X, Luo H, Li W, Meng P, et al. Comparative efficacy of non-invasive neurostimulation therapies for poststroke dysphagia: A systematic review and meta-analysis. Neurophysiol Clin. 2021;51(6):493-506. https://doi.org/10.1016/j.neucli.2021.02.006

(290) Li KP, Sun J, Wu CQ, An XF, Wu JJ, Zheng MX, et al. Effects of repetitive transcranial magnetic stimulation on post-stroke patients with cognitive impairment: A systematic review and meta-analysis. Behav Brain Res. 2023;15;439:114229. https://doi.org/10.1016/j.bbr.2022.114229

(291) Hildesheim FE, Silver AN, Dominguez-Vargas AU, Andrushko JW, Edwards JD, Dancause N, et al. Predicting Individual Treatment Response to rTMS for Motor Recovery After Stroke: A Review and the CanStim Perspective. Front Rehabil Sci. 2022;3:795335. https://doi.org/10.3389/fresc.2022.795335

(292) Liu C, Wang M, Liang X, Xue J, Zhang G. Efficacy and Safety of High-Frequency Repetitive Transcranial Magnetic Stimulation for Poststroke Depression: A Systematic Review and Meta-analysis. Arch Phys Med Rehabil. 2019;100(10):1964-75. https://doi.org/10.1016/j.apmr.2019.03.012

(293) Hara T, Shanmugalingam A, McIntyre A, Burhan AM. The Effect of Non-Invasive Brain Stimulation (NIBS) on Executive Functioning, Attention and Memory in Rehabilitation Patients with Traumatic Brain Injury: A Systematic Review. Diagnostics. 2021;11(4):627. https://doi.org/10.3390/diagnostics11040627

(294) Di Pino G, Pellegrino G, Assenza G, Capone F, Ferreri F, Formica D, et al. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nat Rev Neurol. 2014;10(10):597-608. https://doi.org/10.1038/nrneurol.2014.162

(295) Grefkes C, Fink GR. Recovery from stroke: current concepts and future perspectives. Neurol Res Pract. 2020;2:17. https://doi.org/10.1186/s42466-020-00060-6

(296) Postuma RB, Aarsland D, Barone P, Burn DJ, Hawkes CH, Oertel W, et al. Identifying prodromal Parkinson's disease: pre-motor disorders in Parkinson's disease. Mov Disord. 2012;27(5):617-26. https://doi.org/10.1002/mds.24996

(297) Goodwill AM, Lum JAG, Hendy AM, Muthalib M, Johnson L, Albein-Urios N, et al. Using non-invasive transcranial stimulation to improve motor and cognitive function in Parkinson's disease: a systematic review and meta-analysis. Sci Rep. 2017;7(1):14840. https://doi.org/10.1038/s41598-017-13260-z

(298) Li S, Jiao R, Zhou X, Chen S. Motor recovery and antidepressant effects of repetitive transcranial magnetic stimulation on Parkinson disease: A PRISMA-compliant meta-analysis. Medicine. 2020;99(18):e19642. https://doi.org/10.1097/md.0000000000019642

(299) Zhang W, Deng B, Xie F, Zhou H, Guo JF, Jiang H, et al. Efficacy of repetitive transcranial magnetic stimulation in Parkinson's disease: A systematic review and meta-analysis of randomised controlled trials. eClinicalMedicine. 2022;52:101589. https://doi.org/10.1016/j.eclinm.2022.101589

(300) Beretta VS, Conceição NR, Nóbrega-Sousa P, Orcioli-Silva D, Dantas LKBF, Gobbi LTB, et al. Transcranial direct current stimulation combined with physical or cognitive training in people with Parkinson’s disease: a systematic review. J Neuroeng Rehabil. 2020;17(1):74. https://doi.org/10.1186/s12984-020-00701-6

(301) Deng S, Dong Z, Pan L, Liu Y, Ye Z, Qin L, et al. Effects of repetitive transcranial magnetic stimulation on gait disorders and cognitive dysfunction in Parkinson's disease: A systematic review with meta-analysis. Brain Behav. 2022;12(8):e2697. https://doi.org/10.1002/brb3.2697

(302) Wu Y, Cao XB, Zeng WQ, Zhai H, Zhang XQ, Yang XM, et al. Transcranial Magnetic Stimulation Alleviates Levodopa-Induced Dyskinesia in Parkinson’s Disease and the Related Mechanisms: A Mini-Review. Front Neurol. 2021;12:758345. https://doi.org/10.3389/fneur.2021.758345

(303) Fregni F, El-Hagrassy MM, Pacheco-Barrios K, Carvalho S, Leite J, Simis M, et al. Evidence-Based Guidelines and Secondary Meta-Analysis for the Use of Transcranial Direct Current Stimulation in Neurological and Psychiatric Disorders. Int J Neuropsychopharmacol. 2021;24(4):256-313. https://doi.org/10.1093/ijnp/pyaa051

(304) Dinkelbach L, Brambilla M, Manenti R, Brem AK. Non-invasive brain stimulation in Parkinson's disease: Exploiting crossroads of cognition and mood. Neurosci Biobehav Rev. 2017;75:407-18. https://doi.org/10.1016/j.neubiorev.2017.01.021

(305) Chen J, He P, Zhang Y, Gao Y, Qiu Y, Li Y, et al. Non-pharmacological treatment for Parkinson disease patients with depression: a meta-analysis of repetitive transcranial magnetic stimulation and cognitive-behavioral treatment. Int J Neurosci. 2021;131(4):411-24. https://doi.org/10.1080/00207454.2020.1744591

(306) Sasegbon A, Smith CJ, Bath P, Rothwell J, Hamdy S. The effects of unilateral and bilateral cerebellar rTMS on human pharyngeal motor cortical activity and swallowing behavior. Exp Brain Res. 2020;238(7-8):1719-33. https://doi.org/10.1007/s00221-020-05787-x

(307) Simons A, Hamdy S. The Use of Brain Stimulation in Dysphagia Management. Dysphagia. 2017;32(2):209-15. https://doi.org/10.1007/s00455-017-9789-z

(308) Doeltgen SH, Rigney L, Cock C, Omari T. Effects of cortical anodal transcranial direct current stimulation on swallowing biomechanics. Neurogastroenterol Motil. 2018;30(11):e13434. https://doi.org/10.1111/nmo.13434

(309) Yamamura K, Kurose M, Okamoto K. Guide to Enhancing Swallowing Initiation: Insights from Findings in Healthy Subjects and Dysphagic Patients. Curr Phys Med Rehabil Rep. 2018;6(3):178-85. https://doi.org/10.1007/s40141-018-0192-y

(310) Marchina S, Pisegna JM, Massaro JM, Langmore SE, McVey C, Wang J, et al. Transcranial direct current stimulation for post-stroke dysphagia: a systematic review and meta-analysis of randomized controlled trials. J Neurol. 2021;268(1):293-304. https://doi.org/10.1007/s00415-020-10142-9

(311) Zhao N, Sun W, Xiao Z, Fan C, Zeng B, Xu K, et al. Effects of Transcranial Direct Current Stimulation on Poststroke Dysphagia: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Arch Phys Med Rehabil. 2022;103(7):1436-47. https://doi.org/10.1016/j.apmr.2022.03.004

(312) Peter N, Kleinjung T. Neuromodulation for tinnitus treatment: an overview of invasive and non-invasive techniques. J Zhejiang Univ Sci B. 2019;20(2):116-30. https://doi.org/10.1631/jzus.b1700117

(313) Langguth B. Non-Invasive Neuromodulation for Tinnitus. J Audiol Otol. 2020;24(3):113-18. https://doi.org/10.7874/jao.2020.00052

(314) Lefebvre-Demers M, Doyon N, Fecteau S. Non-invasive neuromodulation for tinnitus: A meta-analysis and modeling studies. Brain Stimul. 2021;14(1):113-28. https://doi.org/10.1016/j.brs.2020.11.014

(315) Denton AJ, Finberg A, Ashman PE, Bencie NB, Scaglione T, Kuzbyr B, et al. Implications of Transcranial Magnetic Stimulation as a Treatment Modality for Tinnitus. J Clin Med. 2021;10(22):5422. https://doi.org/10.3390/jcm10225422

(316) Deklerck AN, Marechal C, Fernández AMP, Keppler H, Van Roost D, Dhooge IJM. Invasive Neuromodulation as a Treatment for Tinnitus: A Systematic Review. Neuromodulation. 2020;23(4):451-62. https://doi.org/10.1111/ner.13042

(317) Liang Z, Yang H, Cheng G, Huang L, Zhang T, Jia H. Repetitive transcranial magnetic stimulation on chronic tinnitus: a systematic review and meta-analysis. BMC Psychiatry. 2020;20(1):547. https://doi.org/10.1186/s12888-020-02947-9

(318) De Ridder D, van der Loo E, Van der Kelen K, Menovsky T, Van de Heyning P, Moller A. Theta, alpha and beta burst transcranial magnetic stimulation: brain modulation in tinnitus. Int J Med Sci. 2007;4(5):237-41. https://doi.org/10.7150/ijms.4.237

(319) Peng L, Tian L, Wang T, Wang Q, Li N, Zhou H. Effects of non-invasive brain stimulation (NIBS) for executive function on subjects with ADHD: a protocol for a systematic review and meta-analysis. BMJ Open. 2023;13(3):e069004. https://doi.org/10.1136/bmjopen-2022-069004

(320) Saki N, Bayat A, Nikakhlagh S, Mirmomeni G. Vestibular rehabilitation therapy in combination with transcranial direct current stimulation (tDCS) for treatment of chronic vestibular dysfunction in the elderly: a double-blind randomized controlled trial. Braz J Otorhinolaryngol. 2022;88(5):758-66. https://doi.org/10.1016/j.bjorl.2020.11.004

(321) Sasu R. Infra-low frequency neurofeedback in persistent postural-perceptual dizziness-Case report. Front Hum Neurosci. 2022;16:959579. https://doi.org/10.3389/fnhum.2022.959579

(322) Dlugaiczyk J, Gensberger KD, Straka H. Galvanic vestibular stimulation: from basic concepts to clinical applications. J Neurophysiol. 2019;121(6):2237-55. https://doi.org/10.1152/jn.00035.2019

(323) Nam GS, Nguyen TT, Kang JJ, Han GC, Oh SY. Effects of Galvanic Vestibular Stimulation on Vestibular Compensation in Unilaterally Labyrinthectomized Mice. Front Neurol. 2021;12:736849. https://doi.org/10.3389/fneur.2021.736849

(324) Fujimoto C, Egami N, Kawahara T, Uemura Y, Yamamoto Y, Yamasoba T, et al. Noisy Galvanic Vestibular Stimulation Sustainably Improves Posture in Bilateral Vestibulopathy. Front Neurol. 2018;9:900. https://doi.org/10.3389/fneur.2018.00900

(325) Della-Justina HM, Gamba HR, Lukasova K, Nucci-da-Silva MP, Winkler AM, Amaro Jr E. Interaction of brain areas of visual and vestibular simultaneous activity with fMRI. Exp Brain Res. 2015;233(1):237-52. https://doi.org/10.1007/s00221-014-4107-6

(326) Samoudi G, Nissbrandt H, Dutia MB, Bergquist F. Noisy galvanic vestibular stimulation promotes GABA release in the substantia nigra and improves locomotion in hemiparkinsonian rats. PLoS One. 2012;7(1):e29308. https://doi.org/10.1371/journal.pone.0029308

(327) Cogiamanian F, Vergari M, Pulecchi F, Marceglia S, Priori A. Effect of spinal transcutaneous direct current stimulation on somatosensory evoked potentials in humans. Clin Neurophysiol. 2008;119(11):2636-40. https://doi.org/10.1016/j.clinph.2008.07.249

(328) Fernandes SR, Salvador R, Carvalho M, Miranda PC. Modelling Studies of Non-invasive Electric and Magnetic Stimulation of the Spinal Cord. In: Makarov SN, Noetscher GM, Nummenmaa A (eds). Brain and Human Body Modeling 2020: Computational Human Models Presented at EMBC 2019 and the BRAIN Initiative® 2019 Meeting. Springer; 2020. p. 139-65. https://doi.org/10.1007/978-3-030-45623-8_8

(329) Formento E, Minassian K, Wagner F, Mignardot JB, Le Goff-Mignardot CG, Rowald A, et al. Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nat Neurosci. 2018;21(12):1728-41. https://doi.org/10.1038/s41593-018-0262-6

(330) Winkler T, Hering P, Straube A. Spinal DC stimulation in humans modulates post-activation depression of the H-reflex depending on current polarity. Clin Neurophysiol. 2010;121(6):957-61. https://doi.org/10.1016/j.clinph.2010.01.014

(331) Bocci T, Vannini B, Torzini A, Mazzatenta A, Vergari M, Cogiamanian F, et al. Cathodal transcutaneous spinal direct current stimulation (tsDCS) improves motor unit recruitment in healthy subjects. Neurosci Lett. 2014;578:75-9. https://doi.org/10.1016/j.neulet.2014.06.037

(332) Albuquerque PL, Campêlo M, Mendonça T, Fontes LAM, Brito RM, Monte-Silva K. Effects of repetitive transcranial magnetic stimulation and trans-spinal direct current stimulation associated with treadmill exercise in spinal cord and cortical excitability of healthy subjects: A triple-blind, randomized and sham-controlled study. PLoS One. 2018;13(3):e0195276. https://doi.org/10.1371/journal.pone.0195276

(333) Lamy JC, Varriale P, Apartis E, Mehdi S, Blancher-Meinadier A, Kosutzka Z, et al. Trans-Spinal Direct Current Stimulation for Managing Primary Orthostatic Tremor. Mov Disord. 2021;36(8):1835-42. https://doi.org/10.1002/mds.28581

(334) Picelli A, Chemello E, Castellazzi P, Roncari L, Waldner A, Saltuari L, et al. Combined effects of transcranial direct current stimulation (tDCS) and transcutaneous spinal direct current stimulation (tsDCS) on robot-assisted gait training in patients with chronic stroke: A pilot, double blind, randomized controlled trial. Restor Neurol Neurosci. 2015;33(3):357-68. https://doi.org/10.3233/rnn-140474

(335) Hawkins KA, DeMark LA, Vistamehr A, Snyder HJ, Conroy C, Wauneka C, et al. Feasibility of transcutaneous spinal direct current stimulation combined with locomotor training after spinal cord injury. Spinal Cord. 2022;60(11):971-7. https://doi.org/10.1038/s41393-022-00801-1

(336) Guidetti M, Ferrucci R, Vergani M, Aglieco G, Naci A, Versace S, et al. Effects of Transcutaneous Spinal Direct Current Stimulation (tsDCS) in Patients With Chronic Pain: A Clinical and Neurophysiological Study. Front Neurol. 2021;12:695910. https://doi.org/10.3389/fneur.2021.695910

(337) Gu L, Xu H, Qian F. Effects of Non-Invasive Brain Stimulation on Alzheimer's Disease. J Prev Alzheimers Dis. 2022;9(3):410-24. https://doi.org/10.14283/jpad.2022.40

(338) Kasten FH, Dowsett J, Herrmann CS. Sustained Aftereffect of α-tACS Lasts Up to 70 min after Stimulation. Front Hum Neurosci. 2016;10:245. https://doi.org/10.3389/fnhum.2016.00245

(339) Boggio PS, Ferrucci R, Rigonatti SP, Covre P, Nitsche M, Pascual-Leone A, et al. Effects of transcranial direct current stimulation on working memory in patients with Parkinson's disease. J Neurol Sci. 2006;249(1):31-8. https://doi.org/10.1016/j.jns.2006.05.062

(340) Rabey JM, Dobronevsky E, Aichenbaum S, Gonen O, Marton RG, Khaigrekht M. Repetitive transcranial magnetic stimulation combined with cognitive training is a safe and effective modality for the treatment of Alzheimer's disease: a randomized, double-blind study. J Neural Transm. 2013;120(5):813-9. https://doi.org/10.1007/s00702-012-0902-z

(341) Tseng PT, Chen YW, Zeng BY, Zeng BS, Hung CM, Sun CK, et al. The beneficial effect on cognition of noninvasive brain stimulation intervention in patients with dementia: a network meta-analysis of randomized controlled trials. Alzheimers Res Ther. 2023;15(1):20. https://doi.org/10.1186%2Fs13195-023-01164-2

(342) Morris-Rosendahl DJ, Crocq MA. Neurodevelopmental disorders-the history and future of a diagnostic concept . Dialogues Clin Neurosci. 2020;22(1):65-72. https://doi.org/10.31887/dcns.2020.22.1/macrocq

(343) Santos FH, Mosbacher JA, Menghini D, Rubia K, Grabner RH, Cohen Kadosh R. Effects of transcranial stimulation in developmental neurocognitive disorders: A critical appraisal. Prog Brain Res. 2021;264:1-40. https://doi.org/10.1016/bs.pbr.2021.01.012

(344) Hameed MQ, Dhamne SC, Gersner R, Kaye HL, Oberman LM, Pascual-Leone A, et al. Transcranial Magnetic and Direct Current Stimulation in Children. Curr Neurol Neurosci Rep. 2017;17(2):11. https://doi.org/10.1007/s11910-017-0719-0

(345) Rajapakse T, Kirton A. Non-Invasive Brain Stimulation in Children: Applications and Future Directions. Transl Neurosci. 2013;4(2):217-33. https://doi.org/10.2478/s13380-013-0116-3

(346) Palm U, Segmiller FM, Epple AN, Freisleder FJ, Koutsouleris N, Schulte-Körne G, et al. Transcranial direct current stimulation in children and adolescents: a comprehensive review. J Neural Transm. 2016;123(10):1219-34. https://doi.org/10.1007/s00702-016-1572-z

(347) Bikson M, Grossman P, Thomas C, Zannou AL, Jiang J, Adnan T, et al. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimul. 2016;9(5):641-61. https://doi.org/10.1016/j.brs.2016.06.004

(348) García-González S, Lugo-Marín J, Setien-Ramos I, Gisbert-Gustemps L, Arteaga-Henríquez G, Díez-Villoria E, et al. Transcranial direct current stimulation in Autism Spectrum Disorder: A systematic review and meta-analysis. Eur Neuropsychopharmacol. 2021;48:89-109. https://doi.org/10.1016/j.euroneuro.2021.02.017

(349) Westwood SJ, Radua J, Rubia K. Noninvasive brain stimulation in children and adults with attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. J Psychiatry Neurosci. 2021;46(1):E14-E33. https://doi.org/10.1503/jpn.190179

(350) Boggio PS, Asthana MK, Costa TL, Valasek CA, Osório AA. Promoting social plasticity in developmental disorders with non-invasive brain stimulation techniques. Front Neurosci. 2015;9:294. https://doi.org/10.3389/fnins.2015.00294

(351) Finisguerra A, Borgatti R, Urgesi C. Non-invasive Brain Stimulation for the Rehabilitation of Children and Adolescents With Neurodevelopmental Disorders: A Systematic Review. Front Psychol. 2019;10:135. https://doi.org/10.3389/fpsyg.2019.00135

(352) Lorenzon N, Musoles-Lleó J, Turrisi F, Gomis-González M, De La Torre R, Dierssen M. State-of-the-art therapy for Down syndrome. Dev Med Child Neurol. 2023;65(7):870-84. https://doi.org/10.1111/dmcn.15517

(353) Pretzsch CM, Ecker C. The neuroanatomy of autism. In: Kana RK (ed). The Neuroscience of Autism. Academic Press; 2022. p. 87-105. https://doi.org/10.1016/B978-0-12-816393-1.00013-0

(354) Torre-Ubieta L, Won H, Stein JL, Geschwind DH. Advancing the understanding of autism disease mechanisms through genetics. Nat Med. 2016;22(4):345-61. https://doi.org/10.1038/nm.4071

(355) Hernandez LM, Rudie JD, Green SA, Bookheimer S, Dapretto M. Neural signatures of autism spectrum disorders: insights into brain network dynamics. Neuropsychopharmacology. 2015;40(1):171-89. https://doi.org/10.1038/npp.2014.172

(356) Khaleghi A, Zarafshan H, Vand SR, Mohammadi MR. Effects of Non-invasive Neurostimulation on Autism Spectrum Disorder: A Systematic Review. Clin Psychopharmacol Neurosci. 2020;18(4):527-52. https://doi.org/10.9758/cpn.2020.18.4.527

(357) Zhang J, Zhang H. Effects of non-invasive neurostimulation on autism spectrum disorder: A systematic review. Front Psychiatry. 2022;13:989905. https://doi.org/10.3389/fpsyt.2022.989905

(358) Salehinejad MA, Ghanavati E, Glinski B, Hallajian AH, Azarkolah A. A systematic review of randomized controlled trials on efficacy and safety of transcranial direct current stimulation in major neurodevelopmental disorders: ADHD, autism, and dyslexia. Brain Behav. 2022;12(9):e2724. https://doi.org/10.1002/brb3.2724

(359) Barahona-Corrêa JB, Velosa A, Chainho A, Lopes R, Oliveira-Maia AJ. Repetitive Transcranial Magnetic Stimulation for Treatment of Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Front Integr Neurosci. 2018;12:27. https://doi.org/10.3389/fnint.2018.00027

(360) Rubia K. Functional brain imaging across development. Eur Child Adolesc Psychiatry. 2013;22(12):719-31. https://doi.org/10.1007/s00787-012-0291-8

(361) Cortese S, Adamo N, Del Giovane C, Mohr-Jensen C, Hayes AJ, Carucci S, et al. Comparative efficacy and tolerability of medications for attention-deficit hyperactivity disorder in children, adolescents, and adults: a systematic review and network meta-analysis. Lancet Psychiatry. 2018;5(9):727-38. https://doi.org/10.1016/s2215-0366(18)30269-4

(362) Cortese S. Debate: Are Stimulant Medications for Attention-Deficit/Hyperactivity Disorder Effective in the Long Term?. J Am Acad Child Adolesc Psychiatry. 2019;58(10):936. https://doi.org/10.1016/j.jaac.2019.04.029

(363) Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: State of the art 2008. Brain Stimul. 2008;1(3):206-23. https://doi.org/10.1016/j.brs.2008.06.004

(364) Kim S, Stephenson MC, Morris PG, Jackson SR. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study. Neuroimage. 2014;99:237-43. https://doi.org/10.1016/j.neuroimage.2014.05.070

(365) Gómez L, Vidal B, Morales L, Báez M, Maragoto C, Galvizu R, et al. Low frequency repetitive transcranial magnetic stimulation in children with attention deficit/hyperactivity disorder. Preliminary results. Brain Stimul. 2014;7(5):760-2. https://doi.org/10.1016/j.brs.2014.06.001

(366) Ashkan K, Shotbolt P, David AS, Samuel M. Deep brain stimulation: a return journey from psychiatry to neurology. Postgrad Med J. 2013;89(1052):323-8. https://doi.org/10.1136/postgradmedj-2012-131520

(367) Krishnan C, Santos L, Peterson MD, Ehinger M. Safety of noninvasive brain stimulation in children and adolescents. Brain Stimul. 2015;8(1):76-87. https://doi.org/10.1016/j.brs.2014.10.012

(368) Zewdie E, Ciechanski P, Kuo HC, Giuffre A, Kahl C, King R, et al. Safety and tolerability of transcranial magnetic and direct current stimulation in children: Prospective single center evidence from 3.5 million stimulations. Brain Stimul. 2020;13(3):565-75. https://doi.org/10.1016/j.brs.2019.12.025

(369) Kuo MF, Nitsche MA. Effects of transcranial electrical stimulation on cognition. Clin EEG Neurosci. 2012;43(3):192-9. https://doi.org/10.1177/1550059412444975

(370) Roberts BA, Martel MM, Nigg JT. Are There Executive Dysfunction Subtypes Within ADHD? J Atten Disord. 2017;21(4):284-93. https://doi.org/10.1177/1087054713510349

(371) International Association for the Study of Pain (IASP). Terminology [Internet]. Available from: https://www.iasp-pain.org/resources/terminology/

(372) Finnerup NB, Kuner R, Jensen TS. Neuropathic Pain: From Mechanisms to Treatment. Physiol Rev. 2021;101(1):259-301. https://doi.org/10.1152/physrev.00045.2019

(373) Hecke O, Austin SK, Khan RA, Smith BH, Torrance N. Neuropathic pain in the general population: a systematic review of epidemiological studies. Pain. 2014;155(4):654-62. https://doi.org/10.1016/j.pain.2013.11.013

(374) Scholz J, Finnerup NB, Attal N, Aziz Q, Baron R, Bennett MI, et al. The IASP classification of chronic pain for ICD-11: chronic neuropathic pain. Pain. 2019;160(1):53-59. https://doi.org/10.1097/j.pain.0000000000001365

(375) Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009;10(9):895-926. https://doi.org/10.1016/j.jpain.2009.06.012

(376) Zhao J, Seereeram A, Nassar MA, Levato A, Pezet S, Hathaway G, et al. Nociceptor-derived brain-derived neurotrophic factor regulates acute and inflammatory but not neuropathic pain. Mol Cell Neurosci. 2006;31(3):539-48. https://doi.org/10.1016/j.mcn.2005.11.008

(377) Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci. 2009;32:1-32. https://doi.org/10.1146/annurev.neuro.051508.135531

(378) Di Pietro F, Macey PM, Rae CD, Alshelh Z, Macefield VG, Vickers ER, et al. The relationship between thalamic GABA content and resting cortical rhythm in neuropathic pain. Hum Brain Mapp. 2018;39(5):1945-56. https://doi.org/10.1002%2Fhbm.23973

(379) Moisset X, Bouhassira D, Attal N. French guidelines for neuropathic pain: An update and commentary. Rev Neurol. 2021;177(7):834-7. https://doi.org/10.1016/j.neurol.2021.07.004

(380) Baptista AF, Fernandes AMBL, Sá KN, Okano AH, Brunoni AR, Lara-Solares A, et al. Latin American and Caribbean consensus on noninvasive central nervous system neuromodulation for chronic pain management (LAC2-NIN-CP). Pain Rep. 2019;4(1):e692. https://doi.org/10.1097%2FPR9.0000000000000692

(381) Jiang X, Yan W, Wan R, Lin Y, Zhu X, Song G, et al. Effects of repetitive transcranial magnetic stimulation on neuropathic pain: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2022;132:130-41. https://doi.org/10.1016/j.neubiorev.2021.11.037

(382) Gatzinsky K, Bergh C, Liljegren A, Silander H, Samuelsson J, Svanberg T, et al. Repetitive transcranial magnetic stimulation of the primary motor cortex in management of chronic neuropathic pain: a systematic review. Scand J Pain. 2020;21(1):8-21. https://doi.org/10.1515/sjpain-2020-0054

(383) Treede RD, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, et al. Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology. 2008;70(18):1630-5. https://doi.org/10.1212/01.wnl.0000282763.29778.59

(384) Attal N, Cruccu G, Haanpää M, Hansson P, Jensen TS, Nurmikko T, et al. EFNS guidelines on pharmacological treatment of neuropathic pain. Eur J Neurol. 2006;13(11):1153-69. https://doi.org/10.1111/j.1468-1331.2006.01511.x

(385) Lefaucheur JP, Drouot X, Keravel Y, Nguyen JP. Pain relief induced by repetitive transcranial magnetic stimulation of precentral cortex. Neuroreport. 2001;12(13):2963-5. https://doi.org/10.1097/00001756-200109170-00041

(386) André-Obadia N, Peyron R, Mertens P, Mauguière F, Laurent B, Garcia-Larrea L. Transcranial magnetic stimulation for pain control. Double-blind study of different frequencies against placebo, and correlation with motor cortex stimulation efficacy. Clin Neurophysiol. 2006;117(7):1536-44. https://doi.org/10.1016/j.clinph.2006.03.025

(387) Hosomi K, Shimokawa T, Ikoma K, Nakamura Y, Sugiyama K, Ugawa Y, et al. Daily repetitive transcranial magnetic stimulation of primary motor cortex for neuropathic pain: a randomized, multicenter, double-blind, crossover, sham-controlled trial. Pain. 2013;154(7):1065-72. https://doi.org/10.1016/j.pain.2013.03.016

(388) Quesada C, Pommier B, Fauchon C, Bradley C, Créac'h C, Murat M, et al. New procedure of high-frequency repetitive transcranial magnetic stimulation for central neuropathic pain: a placebo-controlled randomized crossover study. Pain. 2020;161(4):718-28. https://doi.org/10.1097/j.pain.0000000000001760

(389) Galhardoni R, Correia GS, Araujo H, Yeng LT, Fernandes DT, Kaziyama HH, et al. Repetitive transcranial magnetic stimulation in chronic pain: a review of the literature. Arch Phys Med Rehabil. 2015;96(suppl 4):S156-72. https://doi.org/10.1016/j.apmr.2014.11.010

(390) Moisset X, Bouhassira D, Avez Couturier J, Alchaar H, Conradi S, Delmotte MH, et al. Pharmacological and non-pharmacological treatments for neuropathic pain: Systematic review and French recommendations. Rev Neurol. 2020;176(5):325-52. https://doi.org/10.1016/j.neurol.2020.01.361

(391) Clauw DJ. Fibromyalgia: a clinical review. JAMA. 2014;311(15):1547-55. https://doi.org/10.1001/jama.2014.3266

(392) Sarzi-Puttini P, Giorgi V, Marotto D, Atzeni F. Fibromyalgia: an update on clinical characteristics, aetiopathogenesis and treatment. Nat Rev Rheumatol. 2020;16(11):645-60. https://doi.org/10.1038/s41584-020-00506-w

(393) Kosek E, Cohen M, Baron R, Gebhart GF, Mico JA, Rice ASC, et al. Do we need a third mechanistic descriptor for chronic pain states?. Pain. 2016;157(7):1382-6. https://doi.org/10.1097/j.pain.0000000000000507

(394) Cifre I, Sitges C, Fraiman D, Muñoz MÁ, Balenzuela P, González-Roldán A, et al. Disrupted functional connectivity of the pain network in fibromyalgia. Psychosom Med. 2012;74(1):55-62. https://doi.org/10.1097/psy.0b013e3182408f04

(395) Dehghan M, Schmidt-Wilcke T, Pfleiderer B, Eickhoff SB, Petzke F, Harris RE, et al. Coordinate-based (ALE) meta-analysis of brain activation in patients with fibromyalgia. Hum Brain Mapp. 2016;37(5):1749-58. https://doi.org/10.1002/hbm.23132

(396) Gracely RH, Petzke F, Wolf JM, Clauw DJ. Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum. 2002;46(5):1333-43. https://doi.org/10.1002/art.10225

(397) Napadow V, Kim J, Clauw DJ, Harris RE. Decreased intrinsic brain connectivity is associated with reduced clinical pain in fibromyalgia. Arthritis Rheum. 2012;64(7):2398-403. https://doi.org/10.1002/art.34412

(398) Jensen KB, Loitoile R, Kosek E, Petzke F, Carville S, Fransson P, et al. Patients with fibromyalgia display less functional connectivity in the brain’s pain inhibitory network. Mol Pain. 2012;8:32. https://doi.org/10.1186/1744-8069-8-32

(399) González-Roldán AM, Bomba IC, Diesch E, Montoya P, Flor H, Kamping S. Controllability and hippocampal activation during pain expectation in fibromyalgia syndrome. Biol Psychol. 2016;121(Pt A):39-48. https://doi.org/10.1016/j.biopsycho.2016.09.007

(400) Fischer-Jbali LR, Montoro CI, Montoya P, Halder W, Duschek S. Central nervous activity during a dot probe task with facial expressions in fibromyalgia. Biol Psychol. 2022;172:108361. https://doi.org/10.1016/j.biopsycho.2022.108361

(401) Harris RE, Clauw DJ, Scott DJ, McLean SA, Gracely RH, Zubieta JK. Decreased central mu-opioid receptor availability in fibromyalgia. J Neurosci. 2007;27(37):10000-6. https://doi.org/10.1523/jneurosci.2849-07.2007

(402) Macfarlane GJ, Kronisch C, Dean LE, Atzeni F, Häuser W, Fluß E, et al. EULAR revised recommendations for the management of fibromyalgia. Ann Rheum Dis. 2017;76(2):318-28. https://doi.org/10.1136/annrheumdis-2016-209724

(403) Ambriz-Tututi M, Alvarado-Reynoso B, Drucker-Colín R. Analgesic effect of repetitive transcranial magnetic stimulation (rTMS) in patients with chronic low back pain. Bioelectromagnetics. 2016;37(8):527-35. https://doi.org/10.1002/bem.22001

(404) García-Larrea L, Peyron R, Mertens P, Gregoire MC, Lavenne F, Le Bars D, et al. Electrical stimulation of motor cortex for pain control: a combined PET-scan and electrophysiological study. Pain. 1999;83(2):259-73. https://doi.org/10.1016/s0304-3959(99)00114-1

(405) Maarrawi J, Peyron R, Mertens P, Costes N, Magnin M, Sindou M, et al. Motor cortex stimulation for pain control induces changes in the endogenous opioid system. Neurology. 2007;69(9):827-34. https://doi.org/10.1212/01.wnl.0000269783.86997.37

(406) Patricio P, Roy JS, Rohel A, Gariépy C, Émond C, Hamel É, et al. The Effect of Noninvasive Brain Stimulation to Reduce Nonspecific Low Back Pain: A Systematic Review and Meta-analysis. Clin J Pain. 2021;37(6):475-85. https://doi.org/10.1097/ajp.0000000000000934

(407) Jafarzadeh A, Ehsani F, Yosephi MH, Zoghi M, Jaberzadeh S. Concurrent postural training and M1 anodal transcranial direct current stimulation improve postural impairment in patients with chronic low back pain. J Clin Neurosci. 2019;68:224-234. https://doi.org/10.1016/j.jocn.2019.07.017

(408) Hazime FA, Baptista AF, Freitas DG, Monteiro RL, Maretto RL, Hasue RH, et al. Treating low back pain with combined cerebral and peripheral electrical stimulation: A randomized, double-blind, factorial clinical trial. Eur J Pain. 2017;21(7):1132-43. https://doi.org/10.1002/ejp.1037

(409) Baden M, Lu L, Drummond FJ, Gavin A, Sharp L. Pain, fatigue and depression symptom cluster in survivors of prostate cancer. Support Care Cancer. 2020;28(10):4813-24. https://doi.org/10.1007/s00520-019-05268-0

(410) Ma Y, He B, Jiang M, Yang Y, Wang C, Huang C, et al. Prevalence and risk factors of cancer-related fatigue: A systematic review and meta-analysis. Int J Nurs Stud. 2020;111:103707. https://doi.org/10.1016/j.ijnurstu.2020.103707

(411) Davis MP. Cancer-Related Neuropathic Pain: Review and Selective Topics. Hematol Oncol Clin North Am. 2018;32(3):417-31. https://doi.org/10.1016/j.hoc.2018.01.005

(412) Chwistek M. Recent advances in understanding and managing cancer pain. F1000Res. 2017;6:945. https://doi.org/10.12688/f1000research.10817.1

(413) Moreira A, Machado DGDS, Moscaleski L, Bikson M, Unal G, Bradley PS, et al. Effect of tDCS on well-being and autonomic function in professional male players after official soccer matches. Physiol Behav. 2021;233:113351. https://doi.org/10.1016/j.physbeh.2021.113351

(414) Brownstein CG, Dent JP, Parker P, Hicks KM, Howatson G, Goodall S, et al. Etiology and Recovery of Neuromuscular Fatigue following Competitive Soccer Match-Play. Front Physiol. 2017;8:831. https://doi.org/10.3389/fphys.2017.00831

(415) Rattray B, Argus C, Martin K, Northey J, Driller M. Is it time to turn our attention toward central mechanisms for post-exertional recovery strategies and performance?. Front Physiol. 2015;6:79. https://doi.org/10.3389/fphys.2015.00079

(416) McIntire LK, McKinley RA, Nelson JM, Goodyear C. Transcranial direct current stimulation versus caffeine as a fatigue countermeasure. Brain Stimul. 2017;10(6):1070-8. https://doi.org/10.1016/j.brs.2017.08.005

(417) Mehrsafar AH, Rosa MAS, Zadeh AM, Gazerani P. A feasibility study of application and potential effects of a single session transcranial direct current stimulation (tDCS) on competitive anxiety, mood state, salivary levels of cortisol and alpha amylase in elite athletes under a real-world competition. Physiol Behav. 2020;227:113173. https://doi.org/10.1016/j.physbeh.2020.113173

(418) Osiurak F, Navarro J, Reynaud E. How Our Cognition Shapes and Is Shaped by Technology: A Common Framework for Understanding Human Tool-Use Interactions in the Past, Present, and Future. Front Psychol. 2018;9:293. https://doi.org/10.3389/fpsyg.2018.00293

(419) Parasuraman R, McKinley RA. Using noninvasive brain stimulation to accelerate learning and enhance human performance. Hum Factors. 2014;56(5):816-24. https://doi.org/10.1177/0018720814538815

(420) Brioschi Guevara A, Bieler M, Altomare D, Berthier M, Csajka C, Dautricourt S, et al. Protocols for cognitive enhancement. A user manual for Brain Health Services-part 5 of 6. Alzheimers Res Ther. 2021;13(1):172. https://doi.org/10.1186/s13195-021-00844-1

(421) Salehpour F, Majdi A, Pazhuhi M, Ghasemi F, Khademi M, Pashazadeh F, et al. Transcranial Photobiomodulation Improves Cognitive Performance in Young Healthy Adults: A Systematic Review and Meta-Analysis. Photobiomodul Photomed Laser Surg. 2019;37(10):635-43. https://doi.org/10.1089/photob.2019.4673

(422) Lavazza A. Transcranial electrical stimulation for human enhancement and the risk of inequality: Prohibition or compensation?. Bioethics. 2019;33(1):122-31. https://doi.org/10.1111/bioe.12504

(423) Antal A, Luber B, Brem AK, Bikson M, Brunoni AR, Cohen Kadosh R, et al. Non-invasive brain stimulation and neuroenhancement. Clin Neurophysiol Pract. 2022;7:146-65. https://doi.org/10.1016/j.cnp.2022.05.002

Downloads

Published

09/13/2023

Issue

Section

Reviews

How to Cite

1.
Baptista AF, Casali AG, Oda AL, Okano AH, Moreira A, Santos ALY da S, et al. Brain Imaging and neurostimulation in health and disorders: status report. Brain Imaging and Stimul. [Internet]. 2023 Sep. 13 [cited 2024 Nov. 21];2:e5167. Available from: https://journals.bahiana.edu.br/index.php/brain/article/view/5167

Most read articles by the same author(s)

<< < 1 2