Galvanic vestibular stimulation in a patient with paraparesis following spinal cord injury: case report
DOI:
https://doi.org/10.17267/2965-3738bis.2025.e6395Keywords:
Spinal Cord Injuries, Galvanic Vestibular Stimulation, Paraplegia, Case ReportAbstract
INTRODUCTION: Spinal cord trauma is one of the main causes of disability in young adults. The loss of motor control components stems from the loss of continuity of the neural pathways underlying the spinal cord, of which we emphasize the corticospinal, vestibulospinal, and reticulospinal tracts. Galvanic vestibular stimulation (GVS) can stimulate projection and propriospinal circuits related to body weight support and mobility. OBJECTIVE: This study aimed to describe a case of a patient with a spinal cord injury, disability scale C, and paraparesis sequelae a year ago, who improved his posture and recovered his gait after therapeutic intervention with galvanic vestibular stimulation associated with vestibular rehabilitation and neurofunctional physiotherapy. METHODS AND MATERIALS: The assessments carried out were a clinical assessment, the Functional Independence Measure (FIM), American Spinal Injury Association (ASIA) scale, a computerized graphic postural assessment, and a posturographic assessment using the Sensory Organization and Functional Reach Tests. The patient underwent the Therapeutic Proof for dosimetry of GVS, and then ten rehabilitation sessions were held with GVS associated with neurofunctional physiotherapy and vestibular rehabilitation. RESULTS: The patient showed changes in each of the assessments in the post-intervention evaluation. The main finding was that the patient recovered walking with support (parallel bar or walker) in the 8th session. CONCLUSION: Galvanic vestibular stimulation is a novel and promising adjunct to body support and mobility regarding stimulating motor control.
Downloads
References
1. Mundra A, Kalidindi KV, Chhabra HS, Manghwani J. Spinal cord stimulation for spinal cord injury – Where do we stand? A narrative review. J Clin Orthop Trauma. 2023;43:102210. http://doi.org/10.1016/j.jcot.2023.102210
2. Barros Filho TEP. Avaliação padronizada nos traumatismos raquimedulares. Rev Bras Ortop [Internet]. 1994;29(3):99–106. Available from: https://cdn.publisher.gn1.link/rbo.org.br/pdf/29-2/1994_mar_99.pdf
3. Mutarelli EG, Coelho FF, Haddad MS. Propedêutica Neurológica: do Sintoma ao Diagnóstico. 2nd ed. Vol. 1. São Paulo: Sarvier; 2014.
4. Fernandes AC, Ramos ACR, Casalis MEP, Hebert SK. AACD Medicina e Reabilitação: Princípios e Prática. 1st ed. Vol. 1. São Paulo: Artes Médicas; 2007.
5. Rossignol S, Bouyer L, Barthelemy D, Langlet C, Leblond H. Recovery of locomotion in the cat following spinal cord lesions. Brain Res Rev. 2002;40:257-66. http://doi.org/10.1016/s0165-0173(02)00208-4
6. Kandel ER, Schwartz JH, Jessel TM. Principles of Neural Science. 4th ed. Vol. 1. New York: McGraw-Hill Professional; 2000.
7. Edwards DJ, Forrest G, Cortes M, Weightman MM, Sadowsky C, Chang SH, et al. Walking improvement in chronic incomplete spinal cord injury with exoskeleton robotic training (WISE): a randomized controlled trial. Spinal Cord. 2022;60:522–32. http://doi.org/10.1038/s41393-022-00751-8
8. Feldman AG, Levin MF, Garofolini A, Piscitelli D, Zhang L. Central pattern generator and human locomotion in the context of referent control of motor actions. Clin Neurophysiol. 2021;132:2870–89. http://doi.org/10.1016/j.clinph.2021.08.016
9. Sayenko DG, Atkinson DA, Mink AM, Gurley KM, Edgerton VR, Harkema SJ, et al. Vestibulospinal and Corticospinal Modulation of Lumbosacral Network Excitability in Human Subjects. Front Physiol. 2018;9:1-12. http://doi.org/10.3389/fphys.2018.01746
10. Alvarado-Navarrete MC, Pliego-Carrillo AC, Ledesma-Ramírez CI, Cuellar CA. Post-activation depression of the Hoffman reflex is not altered by galvanic vestibular stimulation in healthy subjects. Front Integr Neurosci. 2023;17:1-12. http://doi.org/10.3389/fnint.2023.1234613
11. Iles JF, Ali AS, Savic G. Vestibular-evoked muscle responses in patients with spinal cord injury. Brain. 2004;127(7):1584–92. http://doi.org/10.1093/brain/awh173
12. Chen JM, Li XL, Pan QH, Yang Y, Xu SM, Xu JW. Effects of non-invasive brain stimulation on motor function after spinal cord injury: a systematic review and meta-analysis. J NeuroEngineering Rehabil. 2023;20(3):1-19. http://doi.org/10.1186/s12984-023-01129-4
13. Fujimoto C, Egami N, Kawahara T, Uemura Y, Yamamoto Y, Yamasoba T, et al. Noisy galvanic vestibular stimulation sustainably improves posture in bilateral vestibulopathy. Front Neurol. 2018;(9):1-9. http://doi.org/10.3389/fneur.2018.00900
14. Fujimoto C, Yamamoto Y, Kamogashira T, Kinoshita M, Egami N, Uemura Y, et al. Noisy galvanic vestibular stimulation induces a sustained improvement in body balance in elderly adults. Sci Rep. 2016;6:1-8. http://doi.org/10.1038/srep37575
15. Dittuno PL, Ditunno Jr JF. Walking index for spinal cord injury (WISCI II): scale revision. Spinal Cord. 2001;39(12):654–6. http://doi.org/10.1038/sj.sc.3101223
16. Inanici F, Brighton LN, Samejima S, Hofstetter CP, Moritz CT. Transcutaneous Spinal Cord Stimulation Restores Hand and Arm Function after Spinal Cord Injury. IEEE Trans Neural Syst Rehabil Eng. 2021;29:310–9. http://doi.org/10.1109/TNSRE.2021.3049133
17. Cajigas I, Vedantam A. Brain-Computer Interface, Neuromodulation, and Neurorehabilitation Strategies for Spinal Cord Injury. Neurosurg Clin N Am. 2021;32(3):407–17. http://doi.org/10.1016/j.nec.2021.03.012
18. Jo HJ, Perez MA. Corticospinal-motor neuronal plasticity promotes exercise-mediated recovery in humans with spinal cord injury. Brain. 2020;143(5):1368–82. http://doi.org/10.1093/brain/awaa052
19. Bergmann M, Zahharova A, Reinvee M, Asser T, Gapeyeva H, Vahtrik D. The effect of functional electrical stimulation and therapeutic exercises on trunk muscle tone and dynamic sitting balance in persons with chronic spinal cord injury: A crossover trial. Medicina. 2019;55(10):619. http://doi.org/10.3390/medicina55100619
20. Nascimento TN, Boffino CC. Case Report: Galvanic Vestibular Stimulation in the Chronic Spinal Cord Injury Patient. Front Rehabil Sci. 2022;3:1-8. http://doi.org/10.3389/fresc.2022.779846
21. Dlugaiczyk J, Gensberger KD, Straka H. Galvanic vestibular stimulation: from basic concepts to clinical applications. J Neurophysiol. 2019;121(6):2237–55. http://doi.org/10.1152/jn.00035.2019
22. Pavlik AE, Inglis JT, Lauk M, Oddsson L, Collins JJ. The effects of stochastic galvanic vestibular stimulation on human postural sway. Exp Brain Res. 1999;124:273–80. http://doi.org/10.1007/s002210050623
23. Piirtola M, Era P. Force Platform Measurements as Predictors of Falls among Older People – A Review. Gerontology. 2006;52(1):1–16. http://doi.org/10.1159/000089820
24. Nam GS, Nguyen TT, Kang JJ, Han GC, Oh SY. Effects of Galvanic Vestibular Stimulation on Vestibular Compensation in Unilaterally Labyrinthectomized Mice. Front Neurol. 2021;12:1-11. http://doi.org/10.3389/fneur.2021.736849
25. Keywan A, Wuehr M, Pradhan C, Jahn K. Noisy galvanic stimulation improves roll-tilt vestibular perception in healthy subjects. Front Neurol. 2018;9:1-7. http://doi.org/10.3389/fneur.2018.00083
26. Cohen B, Yakushin SB, Holstein GR. What does galvanic vestibular stimulation actually activate? Front Neurol. 2012;2:1-2. http://doi.org/10.3389/fneur.2011.00090
27. Sluydts M, Curthoys I, Vanspauwen R, Papsin BC, Cushing SL, Ramos A, et al. Electrical vestibular stimulation in humans: A narrative review. Audiol Neurotol. 2020;25:6–24. http://doi.org/10.1159/000502407
28. Day BL, Guerraz M, Cole J. Sensory interactions for human balance control revealed by galvanic vestibular stimulation. In: Gandevia SC, Proske U, Stuart DG (eds) Sensorimotor Control of Movement and Posture. 2002;508:129-37. http://doi.org/10.1007/978-1-4615-0713-0_16
29. Hlavacka F, Shupert CL, Horak FB. The timing of galvanic vestibular stimulation affects responses to platform translation. Brain Res. 1999;821:8–16. http://doi.org/10.1016/s0006-8993(98)01356-0
30. Takakusaki K. Functional Neuroanatomy for Posture and Gait Control. J Mov Disord. 2017;10(1):1–17. http://doi.org/10.14802/jmd.16062
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Catarina Costa Boffino, Kathelyn Regina Cursino dos Santos, Sara Brandão Leite, Ana Julia de Lima do Carmo

This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
