Atualização: sarcopenia

Autores

DOI:

https://doi.org/10.17267/2238-2704rpf.v11i4.4139

Palavras-chave:

Sarcopenia, Composição corporal, Força muscular

Resumo

OBJETIVO: Fazer uma atualização da revisão de literatura sobre sarcopenia publicada em 2014 nesta revista. De acordo com o Consenso do Working Group on Sarcopenia in Older People (EWGSOP2), a sarcopenia foi redefinida como uma doença muscular, caracterizada pela redução da força muscular, associada à diminuição da qualidade/quantidade muscular e/ou desempenho físico, sendo classificada como primária, secundária, aguda e crônica. Além de consequências físicas como aumento da ocorrência de quedas e limitação para atividades cotidianas, pode promover alterações sistêmicas pelo desequilíbrio entre síntese e degradação proteica. A prevalência aumenta com a idade, sendo mais alta a partir de 60 anos. Estudos em seis países encontraram prevalência entre 4,6% e 22,1%, havendo oscilação de valores conforme definições utilizadas; métodos diagnósticos; bem como, os pontos de corte para índice de massa muscular. Como estratégia para refinar a detecção do risco da sarcopenia, o EWGSOP2 sugere aplicação do questionário SARC-F. Para mensuração da variável massa muscular, os métodos recomendados são Ressonância Magnética, Tomografia Computadorizada, Absorciometria de Raio-X de Dupla Energia, Bioimpedância Elétrica e Antropometria, existindo acurácias e custos variáveis entre eles. Na aferição da força muscular, a principal forma de mensuração é a força de preensão palmar. Já o desempenho físico pode ser quantificado através do teste de velocidade de marcha de quatro metros. As formas de tratamento são treino de exercícios de resistência progressiva e aeróbicos, além de uma nutrição adequada. O estilo de vida sedentário, obesidade e fragilidade são fatores desencadeantes de perda de massa e função muscular no ambiente clínico.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. https://doi.org/10.1093/ageing/afy169

Morley JE, Abbatecola AM, Argiles JM, Baracos V, Bauer J, Bhasin S, et al. Sarcopenia With Limited Mobility: An International Consensus. J Am Med Dir Assoc. 2011;12(6):403–9. https://doi.org/10.1016/j.jamda.2011.04.014

Malmstrom TK, Miller DK, Simonsick EM, Ferrucci L, Morley JE. SARC-F: A symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J Cachexia Sarcopenia Muscle. 2016;7(1):28–36. https://doi.org/10.1002/jcsm.12048

Bahat G, Ilhan B. Sarcopenia and the cardiometabolic syndrome: A narrative review. Eur Geriatr Med. 2016;7(3):220–3. https://doi.org/10.1016/j.eurger.2015.12.012

Bone AE, Hepgul N, Kon S, Maddocks M. Sarcopenia and frailty in chronic respiratory disease: Lessons from gerontology. Chron Respir Dis. 2017;14(1):85–99. https://doi.org/10.1177/1479972316679664

Chang KV, Hsu TH, Wu WT, Huang KC, Han DS. Association Between Sarcopenia and Cognitive Impairment: A Systematic Review and Meta-Analysis. J Am Med Dir Assoc. 2016;17(12):1164.e7-1164.e15. https://doi.org/10.1016/j.jamda.2016.09.013

Beaudart C, Reginster JY, Geerinck A, Locquet M, Bruyère O. Current review of the SarQoL®: a health-related quality of life questionnaire specific to sarcopenia. Expert Rev Pharmacoeconomics Outcomes Res. 2017;17(4):335–41. https://doi.org/10.1080/14737167.2017.1360768

Steffl M, Bohannon RW, Sontakova L, Tufano JJ, Shiells K, Holmerova I. Relationship-between-sarcopenia-and-physical-activity-in-the. Clin Interv Aging. 2017;12:835–45. https://doi.org/10.2147/CIA.S132940

Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M, et al. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol. 2012;3:260. https://doi.org/10.3389/fphys.2012.00260

Martinez BP, Camelier FWR, Camelier AA. Sarcorpenia in the elderly: a study review. Rev Pesq Fisioter. 2014;2(1):62–70. https://doi.org/10.17267/2238-2704rpf.v4i1.349

Rom O, Kaisari S, Aizenbud D, Reznick AZ. Lifestyle and Sarcopenia – Etiology, Prevention and Treatment. Rambam Maimonides Med J. 2012;3(4):e0024. https://doi.org/10.5041/RMMJ.10091

Pedersen BK. The diseasome of physical inactivity - and the role of myokines in muscle-fat cross talk. J Physiol. 2009;587(23):5559–68. https://doi.org/10.1113/jphysiol.2009.179515

Newman AB, Kupelian V, Visser M, Simonsick EM, Goodpaster BH, Kritchevsky SB, et al. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. Gerontologist. 2006;61(1):72–7. https://doi.org/10.1093/gerona/61.1.72

Shimokata H, Shimada H, Satake S, Endo N, Shibasaki K, Ogawa S, et al. Chapter 2 Epidemiology of sarcopenia. Geriatr Gerontol Int. 2018;18(S1):13–22. https://doi.org/10.1111/ggi.13320

Morley JE, Anker SD, von Haehling S. Prevalence, incidence, and clinical impact of sarcopenia: facts, numbers, and epidemiology—update 2014. J Cachexia Sarcopenia Muscle. 2014;5(4):253–9. https://doi.org/10.1007/s13539-014-0161-y

Diz JBM, Queiroz BZ, Tavares LB, Pereira LSB. Prevalence of sarcopenia among the elderly: findings from broad cross-sectional studies in a range of countries. Rev Bras Geriatr Gerontol. 2015;18(3):665–78. https://doi.org/10.1590/1809-9823.2015.14139

Alexandre TS, Duarte YAO, Santos JLF, Lebrão ML. Prevalence and associated factors of sarcopenia, dynapenia, and sarcodynapenia in community-dwelling elderly in São Paulo - SABE Study. Rev Bras Epidemiol. 2018;21(Suppl 2):e180009. https://doi.org/10.1590/1980-549720180009.supl.2

Confortin SC, Ono LM, Barbosa AR, D’orsi E. Sarcopenia and its association with changes in socioeconomic, behavioral, and health factors: the EpiFloripa Elderly Study. Cad Saude Publica. 2018;34(12):e00164917. https://doi.org/10.1590/0102-311X00164917

Moreira VG, Perez M, Lourenço RA. Prevalence of sarcopenia and its associated factors: The impact of muscle mass, gait speed, and handgrip strength reference values on reported frequencies. Clinics. 2019;74(7): e477. https://doi.org/10.6061/clinics/2019/e477

Zhang X, Xie X, Dou Q, Liu C, Zhang W, Yang Y, et al. Association of sarcopenic obesity with the risk of all-cause mortality among adults over a broad range of different settings: A updated meta-analysis. BMC Geriatr. 2019;19(1):183. https://doi.org/10.1186/s12877-019-1195-y

Reis MM, Arantes PMM. Assessment of hand grip strength- validity and reliability of the saehan dynamometer. Fisioter Pesq. 2011;18(2):176–81. https://doi.org/10.1590/S1809-29502011000200013

Francis P, Toomey C, Mc Cormack W, Lyons M, Jakeman P. Measurement of maximal isometric torque and muscle quality of the knee extensors and flexors in healthy 50- to 70-year-old women. Clin Physiol Funct Imaging. 2017;37(4):448–55. https://doi.org/10.1111/cpf.12332

Masanés F, Luque XR, Salvà A, Serra-Rexach JA, Artaza I, Formiga F, et al. Cut-off points for muscle mass — not grip strength or gait speed — determine variations in sarcopenia prevalence. J Nutr Health Aging. 2017;21(7):825–9. https://doi.org/10.1007/s12603-016-0844-5

Buckinx F, Landi F, Cesari M, Fielding RA, Visser M, Engelke K, et al. Pitfalls in the measurement of muscle mass: a need for a reference standard. J Cachexia Sarcopenia Muscle. 2018;9(2):269–78. https://doi.org/10.1002/jcsm.12268

Kim KM, Jang HC, Lim S. Differences among skeletal muscle mass indices derived from height-, weight-, and body mass index-adjusted models in assessing sarcopenia. Korean J Intern Med. 2016;31(4):643–50. https://doi.org/10.3904/kjim.2016.015

Thomas DR. Sarcopenia. Clin Geriatr Med. 2010;26(2):331–46. https://doi.org/10.1016/j.cger.2010.02.012

Tosato M, Marzetti E, Cesari M, Savera G, Miller RR, Bernabei R, et al. Measurement of muscle mass in sarcopenia: from imaging to biochemical markers. Aging Clin Exp Res. 2017;29(1):19–27. https://doi.org/10.1007/s40520-016-0717-0

Lee RC, Wang Z, Heo M, Ross R, Janssen I, Heymsfield SB. Total-body skeletal muscle mass: development and cross-validation of anthropometric prediction models. Am. J. Clin. Nutr. 2000;72(3):796–803. https://doi.org/10.1093/ajcn/72.3.796

Rech CR, Dellagrana RA, Marucci MFN, Petroski EL. Validity of anthropometric equations for the estimation of muscle mass in the elderly. Rev Bras Cineantropom Desempenho Hum. 2012;14(1):23–31. https://doi.org/10.1590/1980-0037.2012v14n1p23

Wielopolski L, Ramirez LM, Gallagher D, Heymsfield SB, Wang ZM. Measuring partial body potassium in the arm versus total body potassium. J Appl Physiol. 2006;101(3):945–9. https://doi.org/10.1152/japplphysiol.00999.2005

Beaudart C, Rolland Y, Cruz-Jentoft AJ, Bauer JM, Sieber C, Cooper C, et al. Assessment of Muscle Function and Physical Performance in Daily Clinical Practice: A position paper endorsed by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Calcif Tissue Int. 2019;105(1):1-14. https://doi.org/10.1007/s00223-019-00545-w

Dodds RM, Syddall HE, Cooper R, Benzeval M, Deary IJ, Dennison EM, et al. Grip strength across the life course: Normative data from twelve British studies. PLoS One. 2014;9(12):e113637. https://doi.org/10.1371/journal.pone.0113637

Cesari M, Kritchevsky SB, Newman AB, Simonsick EM, Harris TB, Penninx BW, et al. Added value of physical performance measures in predicting adverse health-related events: results from the Health, Aging and Body Composition Study. J Am Geriatr Soc. 2009;57(2):251–9. https://doi.org/10.1111/j.1532-5415.2008.02126.x

Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, et al. The FNIH Sarcopenia Project: Rationale, Study Description, Conference Recommendations, and Final Estimates. Gerontologist. 2014;69(5):547–58. https://doi.org/10.1093/gerona/glu010

Gould H, Brennan SL, Kotowicz MA, Nicholson GC, Pasco JA. Total and Appendicular Lean Mass Reference Ranges for Australian Men and Women: The Geelong Osteoporosis Study. Calcif. 2014;94(4):363-72. https://doi.org/10.1007/s00223-013-9830-7

Distefano G, Standley RA, Zhang X, Carnero EA, Yi F, Cornnell HH, et al. Physical activity unveils the relationship between mitochondrial energetics, muscle quality, and physical function in older adults. J Cachexia Sarcopenia Muscle. 2018;9(2):279-94. https://doi.org/10.1002/jcsm.12272

Ruan XY, Gallagher D, Harris T, Albu J, Heymsfield S, Kuznia P, et al. Estimating whole body intermuscular adipose tissue from single cross-sectional magnetic resonance images. J Appl Physiol. 2007;102(2):748–54. https://doi.org/10.1152/japplphysiol.00304.2006

Woo J, Leung J, Morley JE. Defining Sarcopenia in Terms of Incident Adverse Outcomes. J Am Med Dir Assoc. 2015;16(3):247–52. https://doi.org/10.1016/j.jamda.2014.11.013

Bahat G, Yilmaz O, Kiliç C, Oren MM, Karan MA. Performance of SARC-F in Regard to Sarcopenia Definitions, Muscle Mass and Functional Measures. J Nutr Health Aging. 2018;22(8):898–903. https://doi.org/10.1007/s12603-018-1067-8

Taaffe DR, Duret C, Wheeler S, Marcus R. Once-weekly resistance exercise improves muscle strength and neuromuscular performance in older adults. J Am Geriatr Soc. 1999;47(10):1208–14. https://doi.org/10.1111/j.1532-5415.1999.tb05201.x

Mangione KK, Miller AH, Naughton IV. Cochrane review: Improving physical function and performance with progressive resistance strength training in older adults. Phys Ther. 2010;90(12):1711–5. https://doi.org/10.2522/ptj.20100270

Power GA, Dalton BH, Behm DG, Doherty TJ, Vandervoort AA, Rice CL. Motor unit survival in lifelong runners is muscle dependent. Med Sci Sports Exerc. 2012;44(7):1235–42. https://doi.org/10.1249/MSS.0b013e318249953c

Timmerman KL, Dhanani S, Glynn EL, Fry CS, Drummond MJ, Jennings K, et al. A moderate acute increase in physical activity enhances nutritive flow and the muscle protein anabolic response to mixed nutrient intake in older adults. Am J Clin Nutr. 2012;95(6):1403–12. https://doi.org/10.3945/ajcn.111.020800

Akune T, Muraki S, Oka H, Tanaka S, Kawaguchi

H, Nakamura K, et al. Exercise habits during middle age are associated with lower prevalence of sarcopenia: The ROAD study. Osteoporos Int. 2014;25(3):1081–8. https://doi.org/10.1007/s00198-013-2550-z

Liu CK, Leng X, Hsu FC, Kritchevsky SB, Ding J, Earnest CP, et al. The impact of sarcopenia on a physical activity intervention: The lifestyle interventions and independence for elders pilot study (LIFE-P). J Nutr Health Aging [Internet]. 2014;18(1):59–64. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111145/

Margutti KMM, Schuch NJ, Schwanke CHA. Inflammatory markers, sarcopenia and its diagnostic criteria among the elderly: a systematic review. Rev bras geriatr gerontol. 2017;20(3):441–53. https://doi.org/10.1590/1981-22562017020.160155

Ganapathy A, Nieves JW. Nutrition and sarcopenia—What do we know? Nutrients. 2020;12(6):1755. https://doi.org/10.3390/nu12061755

Makanae Y, Fujita S. Role of exercise and nutrition in the prevention of sarcopenia. J Nutr Sci Vitaminol. 2015;61:S125–7. https://doi.org/10.3177/jnsv.61.S125

Morley JE, Malmstrom TK. Frailty, Sarcopenia, and Hormones. Endocrinol Metab Clin North Am. 2013;42(2):391–405. http://dx.doi.org/10.1016/j.ecl.2013.02

Publicado

29.11.2021

Edição

Seção

Revisões de Literatura

Como Citar

Atualização: sarcopenia. (2021). Revista Pesquisa Em Fisioterapia, 11(4), 841-851. https://doi.org/10.17267/2238-2704rpf.v11i4.4139

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 > >>